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We model friction acting on the tip of an atomic force microscope as it is dragged across a surface
at nonzero temperatures. We find that stick-slip motion occurs and that the average frictional force
follows jlnyj2�3, where y is the tip velocity. This compares well to recent experimental work, permitting
the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average
frictional force’s dependence on both temperature and tip speed as well as the form of the friction-force
distribution function.
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The study of friction between two surfaces presents
numerous theoretical and experimental challenges [1,2].
Two macroscopic surfaces interact through many asperi-
ties. These asperities are on an atomic length scale, so
macroscopic friction is inextricably linked with micro-
scopic properties. A friction force microscope, the tip of
which is in essence a single asperity [3–5], provides an
ideal way to probe atomic friction by removing the com-
plication of multiple asperities. Under a constant load,
the low-velocity motion of the tip on a surface exhibits
stick-slip behavior as the moving tip hops over an atomi-
cally defined substrate [6–10]. In principle, such results
can give a quantitative description of friction at the micro-
scopic level. However, this requires a theoretical under-
standing of the behavior of the tip on the substrate. This
is the purpose of this Letter.

Recent studies have argued that, due to thermal fluctua-
tions, the lateral friction force F has a logarithmic depen-
dence on velocity [4,5] F ~ const 1 lny where y is the
velocity of the support. This corresponds to linear creep
between two surfaces in contact when the force acting on
a substrate produces a small constant potential bias [11].
But this is quite different from what occurs when a tip is
dragged across the substrate: the potential bias is continu-
ously ramped up as the support is moved. We will call this
ramped creep and will show that, at constant temperature
T [12–17],

F ~ const 2 T2�3jlny�T j2�3. (1)

It is straightforward to discriminate between linear and
ramped creep. Consider Figs. 1a and 1b, where the com-
bined potential of the atomic substrate and the elastic tip
is shown. Locally, it is sufficient to consider two wells.
In that case, a useful analogy to (mean-field) nucleation
at a first-order phase transition occurs [12,13]. When the
bias is infinitesimally small, the energy, up to an additive
constant, is well described locally by E � Fx 1 x2 2 x4,
where F is friction and x is displacement. Hence the bar-
rier height is DE � �const 2 F�, as for mean-field nucle-
ation near the coexistence curve. In the steady state, the
rate of thermal fluctuations is proportional to the veloc-
0031-9007�01�87(17)�174301(4)$15.00
ity. Since the rate is itself proportional to the probability
of a fluctuation over this barrier, one obtains linear creep:
the force depends logarithmically on the velocity. This is,
however, an unlikely regime because the barrier is so high
(see Fig. 1a). In contrast, as the tip is dragged over the sub-
strate and the bias is ramped up, barrier-hopping fluctua-
tions occur preferentially when the tip is close to slipping
at the top of the barrier. At this point, the local combined
potential can be written E � Fx 2 x3, where the origin
of the x axis has been conveniently shifted, and the second
well has been replaced by an absorbing boundary condi-
tion (see Fig. 1b). Then we have DE � �const 2 F�3�2

and Eq. (1) for ramped creep is obtained. This is similar
to mean-field nucleation near the spinodal [12,13], and is
calculated, as well as observed experimentally, for, e.g.,
magnetic-flux fluctuations in superconducting quantum in-
terference devices [14–16], and in other contexts [17]. We
give a detailed exposition of the algebra below. First, how-
ever, we solve a model numerically and show that the ex-
perimental regime corresponds to our physical picture.

The system composed of the tip of the force microscope
interacting with a surface can be described by a modified
Tomlinson model [7–10]. We thus consider a tip with
longitudinal and transverse coordinate positions x and z
and effective mass M. The tip moves under the influence of
the surface adiabatic potential E�x, z�, coupled elastically
to the support of the microscope, of coordinate R�t� and
Z�t�. For constant load, the distance Z�t� 2 z is fixed, so
the transverse coordinate plays no role, and R � yt with
y the constant speed at which the tip is dragged. Including
the random effect of substrate fluctuations, we have the
Langevin equation

M
d2x
dt2 1 Mg

dx
dt

1
≠E�R, x�

≠x
� j�t� , (2)

where M is the mass of the tip, g is the microscopic friction
coefficient, E is the combined surface-tip potential, and
j is a random noise satisfying the fluctuation-dissipation
relation �j�t�j�t 0�� � 2MgkBTd�t 2 t0�, where the an-
gular brackets denote an average, and kB is Boltzmann’s
constant. The combined surface-tip potential has the form
© 2001 The American Physical Society 174301-1
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FIG. 1. (a) Schematic representation of the combined tip-surface potential just after a slip event. At this point, the energy barrier
is high and thermally activated transitions improbable. (b) As the support is moved, the energy barrier diminishes and transitions
become more likely. Inset (c) shows typical stick-slip behavior of the instantaneous friction force as the support is moved at velocity
y � 25 nm�sec for a temperature T � 293 K. Inset (d) shows the average friction force for different temperatures. Open circles,
squares, diamonds, triangles up, and triangles down correspond, respectively, to temperatures T � 53, 133, 213, 293, and 373 K;
closed circles are the experimental data of Ref. [5]. The units of velocity y are nm�sec.
E�R, x� �
k

2
�R�t� 2 x�2 2 U cos

µ
2px

a

∂
, (3)

where U is the surface barrier potential height, a is the
lattice constant, and k is the elastic constant of the tip-
support coupling. There are a series of potential wells
x̃�R� given by the solution to ≠E�R, x��≠xjx̃ � 0, with the
instantaneous lateral friction force on the support F�t� �
k�R�t� 2 x�t��. A typical sequence of the stick-slip mo-
tion of F is shown in Fig. 1c.

The relevant time scales of the problem are g21, the
viscous time scale for dissipation of energy from the tip
to the surface [18], p0 �

p
Ma2�U, the oscillation pe-

riod of the mass in the surface potential, and the tip reso-
nance period pk �

p
M�k. These parameters are effective

in the sense that their precise value may depend on the
load applied to the friction force microscope [19]. The
friction coefficient must be larger than the critical value
needed to observe overdamped stick-slip behavior at zero
temperature. Within the Tomlinson model, this value is
�2vk [7,9,10]. To first order in the deviations of the tip
from an integer position, the instantaneous force can be
approximated as F�t� 	 �k��1 1 V

2
k ��R�t� 
 k̃R, where

Vk � p0��2ppk�.
Equation (2) was simulated using Ermak’s algorithm

[20] with parameters consistent with experimental condi-
tions. The lattice parameter a � 0.4 nm and the effec-
174301-2
tive spring constant k̃ � 0.86 N�m [21] were taken from
the data of Ref. [5], obtained under constant load Fn �
0.65 nN. The parameters U � 0.27 eV and g � 8.9 3

105 sec21 and spring resonance frequency �2ppk�21 �
52 MHz were adjusted to obtain the best fit with the experi-
mental data. The mass M � 8.7 3 10212 kg then follows.
The tip oscillation frequency 2pp21

0 � 1.1 3 106 sec21

is a comparatively small attempt frequency compared to
usual values in adatoms’ surface diffusion [22], which
is why thermally activated events with very small barrier
height are important.

The numerical simulations were performed over a large
range of velocities 5 nm�sec # y # 256 mm�sec, with
several temperatures 53 # T # 373 K and time steps
0.001p0 # dt # 0.01p0. From the stick-slip motion of
F, we extracted the average lateral force as a function
of velocity, for different temperatures. This is shown
in Fig. 1d. To test the prediction for ramped creep, we
first extracted the constant force in Eq. (1), Fc, from
the data at different temperatures, but fixed ratio of the
scaled velocity y�T , as shown in the top inset of Fig. 2.
With this constant removed, the prediction from Eq. (1)
corresponds to a universal form, which is independent of
temperature. Figure 2 shows a very good scaling collapse
of the dependence of the average force on velocity for
numerical data from five different temperatures, as well
as for experimental data from the work of Gnecco et al.
174301-2
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FIG. 2. Justification of the scaling form, Eq. (1). The upper
inset shows the value Fc as extracted from the data of the friction
force shown in Fig. 1 for different temperatures between 53
and 373 K and fixed ratio T�y � 1 K��nm�sec�. The lower
inset shows significantly worse scaling for linear creep, using
ln�y�T �. The units of velocity y are nm�sec temperature is in
degrees kelvin.

[5]. This collapse well confirms the prediction of ramped
creep from Eq. (1). The small deviations from the loga-
rithmic behavior at large values of y�T . 1 indicate the
approach to the zero-temperature stick-slip motion [7–9].
The bottom inset of Fig. 2 shows that, in contrast, linear
creep does not give a good scaling collapse.

These results can be explained analytically by consid-
ering the thermal activation transition of the tip out of
a single metastable well and the distribution of the sup-
port’s position P�R� when such a transition occurs [14,16].
Translational invariance allows us to concentrate on one
such minimum, of value x̃ � 0 if R � 0. As the sup-
port is moved, the barrier potential to the next minimum
vanishes at some critical position Rc [14], determined by
≠E�≠xc � ≠2E�≠x2

c � 0:

2pRc

a
�

2pxc

a
1

1

V
2
k

sin

µ
2pxc

a

∂
, (4)

where 2pxc�a � cos21�2V
2
k �. Note that the support’s

motion corresponds to a continuous linear ramping of the
potential. Provided that the velocity of the support is
slow enough, there can occur thermally activated transi-
tions between two minima before the critical position Rc

is reached. This is described by the Kramer’s rate [23]

t21 �
V2

2pg
e2DE�kBT , (5)

where V and DE correspond, respectively, to the instan-
taneous effective oscillation frequency and barrier height.
Thermally activated transitions are most likely to occur
when the support’s position is close to the critical value.
To lowest order in the bias f�t� 
 1 2 �R�t��Rc� ø 1,
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the minimum and maximum of the potential are easily ob-
tained, and one finds [14]

V �
2p

p
p0pk

µ
4pRc

a

∂1�4

�1 2 V4
k �1�8f1�4, (6)

and

DE �
2
3

U

µ
4pRc

a

∂3�2 V
3
k

�1 2 V
4
k �1�4

f3�2. (7)

Note the barrier height vanishes as f3�2 as anticipated
above. Likewise, the factor f1�4 justifies the high-friction
limit (g ¿ V) of the prefactor in Eq. (5).

The transition rate represents a measure of the time
needed before a thermally activated transition takes place.
In particular, W�R�t�� � exp 2

Rt
t0

t21�R�t 0�� dt0 gives the
probability that a transition has not taken place at time t.
Because of the exponential character of the transition rate,
the probability for transition is much greater when f ø 1
and insensitive to the initial support position. The distribu-
tion of the support’s position at which a transition occurs
is then conveniently expressed in terms of the reduced bias
f� � �DE�kBT �2�3 as [14]

P�f�� �
3
2

f�1�2

y�
exp�2f�3�2 2 �e2f�3�2

��y�� , (8)

where the dimensionless velocity

y��T , y� � 2

µ
ygp2

0U
kBTa

∂
V

2
k

�1 2 V
4
k�1�2

(9)

is essentially a function of the temperature, microscopic
friction coefficient, and velocity of the support. The aver-
age of the distribution � f�� is then found from Eq. (8), with
value � f�� � jlny�j2�3 1 O �1� lny�� in the limit y� ø 1
[14,16].

Once the average support’s position at which a slip event
occurs is known, it is straightforward to calculate the aver-
age lateral force as the integral of the instantaneous force
over a cycle of the stick-slip motion [24]; the form of
Eq. (1) then follows:

F � Fc 2 DFjlny�j2�3, (10)

where the constants [25]

Fc � k̃

µ
Rc 2

a

2

∂
, (11)

and

DF �
pU
a

µ
3
2

kBT
U

∂2�3µ
�1 2 V

4
k �1�6

1 1 V
2
k

∂
. (12)

With the parameters used in Fig. 2, Eqs. (9), (11), and
(12) predict values of Fc � 0.55 nN, DF�T2�3 � 1.91 3

1023 nN�K2�3, and Ty��y � 3.9 3 1022 K sec�nm. This
compares well to the respective values of �0.54 6
0.01� nN, �1.82 6 0.02� 3 1023 nN�K2�3, and �4.5 6

0.2� 3 1022 K sec�nm extracted from the numerical and
experimental work, confirming that the ramped creep
regime well describes the motion of the tip.
174301-3



VOLUME 87, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 22 OCTOBER 2001
0.25 0.3 0.35 0.4 0.45 0.5 0.55
Fm (nN)

0

0.05

0.1

0.15
P

(F
m

)

FIG. 3. Normalized distribution, with statistical error bar, of
the maxima of the friction force Fm at temperature T � 293 K
and velocity y � 25 nm�sec. The result from the simulation is
well reproduced by the theoretical distribution, Eq. (8).

From the distribution function, other properties can be
calculated. In particular, a directly accessible experimen-
tal quantity is the fluctuation of the maximal force Fm, the
force just before a slip event occurs. Rewriting the bias
as f � 1 2 Fm��k̃Rc� allows us to calculate the distri-
bution of the force maxima. The analytic form is shown
in Fig. 3, together with numerical data. The agreement
between the numerical results and theoretical prediction
is very good. Finally, we note that it is also straightfor-
ward to redo the above calculation for the restricted regime
in which linear creep takes place. This regime is limited
to very small velocities, less than 0.1 nm�sec: an expan-
sion of E�R,x� around x̃ � 0 and x̃ � a yields the con-
dition y , �4pa�gp2

0 � �kBT�k� exp�2fcU�kBT�, where
fc . 0.5 is the value of the bias at which a linear expan-
sion becomes inappropriate.

To test our results experimentally, it would be particu-
larly valuable to consider an extended range of tempera-
tures and velocities, obtaining not only the dependence of
the friction force on those quantities, but the distribution
function of such forces as well. The parameters extracted
from such comparisons would provide direct, feasible, and
simple access to the fundamental description of friction at
the atomic scale.
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