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Determination of the Phase Difference between Even and Odd Continuum Wave Functions
in Atoms through Quantum Interference Measurements
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We establish a technique for the determination of the phase difference between even and odd parity
continuum wave functions in atoms. This determination is based upon our detailed measurements of a
quantum mechanical interference between two photoionization processes using a two-color laser field.
We present our measurement of the phase difference between the continuum p and d waves in atomic
rubidium, which is in good agreement with the expected value.
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We report our experimental determination of the phase
difference between two continuum states that have the op-
posite parity, namely, the p and d waves in atomic rubid-
ium. While several groups have previously measured the
phase difference between atomic continuum states [1–7],
these measurements have, until now, been restricted to
states that have the same parity. By bridging the gap be-
tween the even and odd free atomic states, this technique
allows a determination of the phase difference between any
two continuum wave functions of an atom.

In conventional multiphoton ionization measurements,
the atom absorbs the same number of photons to reach
any continuum energy state, so that dipole selection rules
restrict the parity of the final state to either even or odd, but
not both. In contrast, the present determination is based
upon measurements carried out with a phase-coherent
two-frequency laser field, one component ionizing the
atom through a linear interaction, the other through a
two-photon process. Since the two field components can
each independently photoionize the atom, an interference
between the two interactions results, manifesting itself in
an asymmetric angular distribution of the photoelectrons.

Demonstrations of the interference between even- and
odd-order processes have been reported previously, in-
cluding control over the photoelectron angular distribution
(PAD) in atomic [8,9] or molecular [10] photoionization
processes, control over the angular distribution of the
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products in molecular photodissociation [11], and control
over directional photocurrents in semiconductor materials
[12,13]. In a recent theoretical work [14], Nakajima pro-
posed a method of determining phase differences between
even and odd continuum states using a two-pathway
interference process. Our present measurements are based
on the two-pathway interference, similar to Nakajima’s
scheme.

We consider photoionization of the atoms by the follow-
ing two-frequency laser field:
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In these equations, the RJ represent the reduced single-
photon transition moments from the ground state to the
continuum ´p2PJ wave, where J � 3�2 or 1�2. The pa-
rameters S represent reduced two-photon transition mo-
ments for excitation of the s and d waves, and are defined
in full in [7]. Briefly, Ss is the average moment for excita-
tion of the s wave, Sd is the average moment for excitation
of the d wave, and SDd is the asymmetry in the moments
for excitation of the d wave. The phases js, jp , and jd

are the asymptotic phases of the continuum wave func-
tions [16,17]. The 22 �21� component is obtained from
the 11 �12� component for the O

�1�
ij terms by chang-

ing the spherical harmonic functions Ylm ! 2Yl2m, and
Ylm ! Yl2m for the T

�33�
ij terms.

We find it convenient to quantify the phase difference
between the outgoing waves in terms of the phase

dpd � �f2v 2 2fv� 1 �jp 2 jd� . (4)

From Eqs. (2) and (3) we see that, up to an additional
phase of 2p�2, this phase represents the phase differ-
ence between the outgoing ´p2P, ml � 1, ms � 1�2 and
´d2D, ml � 0, ms � 1�2 waves. The phase of the s wave
is, of course, also critical in these measurements, but since
(i) we have previously determined js 2 jd [7] and (ii) the
cross section for excitation of the s wave is much smaller
than that of the d wave, we report jp 2 jd as the primary
result of this determination.

In Fig. 1 we show several examples of these photoelec-
tron angular distributions, plotted on the basis of Eqs. (2)
and (3). In each case the distance from the origin to the
surface represents the photoelectron flux ejected in that di-
rection. The first two figures are examples that might re-
sult for (a) noninterfering single-photon ionization by a
horizontally polarized UV laser beam (a p wave, of odd
parity) and (b) noninterfering two-photon ionization by a
vertically polarized visible laser beam (a combination of
s and d waves, both of even parity). When the atom is
excited by both fields concurrently, a linear combination
of even and odd parity waves is excited, and this super-
position wave can be highly asymmetric. We show two
examples of these angular distributions in Figs. 1(c) and
1(d). The amplitudes and polarizations of the individual
field components are the same for these PADs as those

(d)(c)(b)

2.0 ×

(a)

FIG. 1. Four examples of PAD calculated from Eq. (2). (a),(b)
The PAD for single-photon ionization by a horizontally polar-
ized laser beam and the PAD for two-photon ionization by a
vertically polarized beam, respectively. The PADs in (c) and (d)
show the result of the interference between the two concurrent
interactions.
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producing the noninterfering PADs in 1(a) and 1(b). The
only difference between the fields producing the PADs in
1(c) and 1(d) is an increment of dpd by 90±. The major
contribution to the asymmetric distributions we observe is
due to the interference between the opposing maxima of
the p wave with the ring about the waist of the d wave.

We carry out the experiment using the apparatus shown
schematically in Fig. 2. A single pulsed, tunable, dye
laser and two-stage amplifier, pumped by the second-
harmonic output of a Nd:YAG laser, generate a verti-
cally polarized, �10 nsec duration, optical pulse at a
wavelength of l � 560 nm and pulse energy of 2 mJ.
We pass the beam through a spatial filter to improve its
transverse mode structure, and split the beam into two
components at the input beam splitter of a configuration
similar to a Mach-Zehnder interferometer. In one branch
of this configuration we insert a type-I phase-matched
second-harmonic generating crystal (beta-barium bo-
rate, or BBO), which produces a horizontally polarized,
phase-coherent pulse at a wavelength of l�2 � 280 nm
and a pulse energy of 12 mJ. We match the optical length
of the other branch of the Mach-Zehnder–like setup to
that of the first to ensure that the propagation delay of
the visible beam matches that of the UV beam when the
two beams are recombined at the second beam splitter.
Upon recombination, we must also ensure that the two
laser beams are overlapped and parallel to better than
0.05 mrad. Otherwise the phase variation between the two
beams differs across the interaction region, rendering the
interference unobservable. We carefully match the beam
sizes in the interaction region, and measure w � 0.7 mm
for the visible beam and w � 0.5 mm for the ultraviolet
beam, where w is the beam radius at which the intensity
decreases to e22 of the on-axis intensity. For perfectly
Gaussian beams, the optimal ratio of the beam radii is

p
2.
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FIG. 2. A top view of the experimental setup. The elements
are labeled as follows: BBO, second-harmonic generating crys-
tals; IR, interaction region; PD, photodiode; MCP assembly, the
photoelectron detector, consisting of a pair of parallel, biased
meshes, a microchannel plate electron multiplier, and a phos-
phor screen. The vertically polarized fundamental beam (2 mJ
pulse energy at l � 560 nm) is shown as a solid line, while the
horizontally polarized harmonic beam (12 mJ at l � 280 nm)
is dashed. The offset shown between these two beams is for
clarity only, as these two beams are precisely overlapped in the
experiment. Each element inside the rectangular dashed line is
contained within the vacuum chamber.
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We direct the recombined beam through a variable
density N2 delay cell and into the atomic beam apparatus,
where it crosses a beam of atomic rubidium. The atomic
beam, of density �7 3 107 cm23, is produced by an
effusive oven of temperature 152 ±C. Varying the density
of N2 in the delay cell allows us to vary �f2v 2 2fv�,
with a change in pressure of 102 torr resulting in a 2p

phase shift. A second BBO crystal mounted inside the
vacuum system allows us to calibrate the phase difference
of the optical field components on an absolute (modulus
2p) basis [8]. The net second-harmonic field amplitude
detected by the photodiode shown in Fig. 2 is the coherent
sum of the fields generated in the first and second crystals,
resulting in a sinusoidal dependence of the harmonic
power at the photodiode on the N2 pressure. Since the
BBO crystal is phase matched for second-harmonic gener-
ation, a maximum in this net harmonic power corresponds
to a zero phase difference between the visible and UV
fields in the interaction region.

We have described our detector in detail in a previ-
ous publication [7]. Briefly, it is an adaptation of that
introduced by Helm et al. [18], in which the interaction
region is situated between two parallel, biased meshes. A
small dc electric field projects the photoelectrons upward
onto a microchannel plate (MCP) electron multiplier and
phosphor screen. The image of the photoelectrons is de-
tected on a shot-by-shot basis by a digital camera in-
terfaced to a personal computer. Under the conditions
of our experiment, approximately 30 electrons are gen-
erated for each laser pulse. We generate a composite
image by accumulating the data over 3000 laser pulses.
We show several examples of the complete photoelectron
images in Figs. 3(a1)–3(e1). We also plot a single row of
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these same data (solid data points) in Figs. 3(a2)–3(e2),
shown with the best theoretical fit to these data as the
solid line. We determine this fit by mapping the para-
bolic trajectory of the photoelectrons ejected at an angle
�Q, F� from the interaction region onto the phosphor
screen.

For the data shown in Figs. 3(a) and 3(b) we ionized
the atoms with only one frequency component of the laser
field at a time, Fig. 3(a) corresponding to one-photon
ionization by the horizontally polarized UV light by itself
and Fig. 3(b) from two-photon ionization by the vertically
polarized visible light. The fitting procedure applied to
the image data in Fig. 3(a1) yields the ratio R1�2�R3�2 �
1.96, necessary for quantifying the one-photon contri-
bution to the interference. To compute an image for
comparison with the measured two-photon image shown
in Fig. 3(b1), we use Ss�Sd � 20.42, SDd�Sd � 20.36,
and js 2 jd � 2.08, as determined at l � 560 nm in
previous measurements [7].

In Figs. 3(c)–3(e), we show examples of data collected
when both laser fields are incident concurrently upon the
atom beam. The only parameters we adjusted to fit the
two-color images were the relative phase difference be-
tween the waves, dpd, and the amplitudes of the two terms
in Eq. (2). The agreement between experimental data and
fits is uniformly good. The quality of the theoretical fits
to the experimental images is especially satisfying when
we consider that no incoherent (noninterfering) terms are
included in Eq. (2). These incoherent terms could conceiv-
ably arise during an experiment via a poor matching of the
beam sizes or beam shapes of the two laser field compo-
nents, or through imperfect alignment of the wave fronts
of these beams.
FIG. 3. Examples of the photoelectron images. The data shown in each column correspond to (a) one-photon ionization with
horizontally polarized light alone, (b) two-photon ionization with vertically polarized light alone, and (c)–(e) ionization resulting
from the interference between the two interactions. For each data set, we show (top) an image of the photoelectron distribution on
the phosphor screen, and (bottom) a line plot showing a single row (row 64) of the data from the image. The solid lines are the
best-fit calculated data. The laser beam propagates in the y direction, with the x-y axes shown in (a1).
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FIG. 4. The phase difference between the partial waves dpd

versus the optical phase difference 2fv 2 f2v . The intercept
of this plot yields the difference in scattering phase between the
p and d waves.

In Fig. 4 we plot the phase difference dpd that produces
the best fit to the experimental images for fourteen different
values of the optical phase difference f2v 2 2fv. The
solid line represents the best-fit straight line of unit slope
for these data. An intercept of jp 2 jd � 5.54 (modulus
2p) 60.18 on this plot is our final result for the differ-
ence in the phases between these atomic p and d wave
functions. We determine the uncertainty from the devia-
tion of the data points in Fig. 4 from the straight line. For
comparison, we can evaluate the expected value of this
phase difference by using quantum defect data from the
bound state spectra for the rubidium p and d rydberg series
[19,20], combined with the analytic form of the Coulomb
phase [16,17], yielding jp 2 jd � �1.301 2 0.958´ 2

3.05´2�p 1 arctan�1��2
p

´ ��, where ´ is the photoelec-
tron kinetic energy in rydbergs. At a photoelectron energy
of ´ � 0.0184 Ry, corresponding to the wavelength of our
laser source, the result of this evaluation is 5.334, in good
agreement with our determination.

In conclusion, we have developed a method for deter-
mining the phase difference between even and odd contin-
uum wave functions. This method, based on interference
between two photoionization pathways, extends our capa-
bility for measuring phase differences to include any pair
of atomic continuum states. The agreement between our
computed images and the measured images is very good.
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