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3Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

4Department of Physics, P.O. Box 210081, University of Arizona, Tucson, Arizona 85721
(Received 11 May 2001; published 9 October 2001)

We apply the ab initio no-core nuclear shell model to solve the six-nucleon systems, 6Li and 6He,
interacting by realistic nucleon-nucleon (NN) potentials. In particular, we present the first results for
A � 6 with the nonlocal CD-Bonn NN potential. The resulting 6Li binding energy 229.3�6� MeV and
the excitation spectra improve the agreement between the theory and experiment compared to results
with local NN potentials, but the need for the inclusion of a real three-body interaction and/or further
improvement of the NN forces remains. We predict properties of the 6He dipole modes, a subject of
current controversy.

DOI: 10.1103/PhysRevLett.87.172502 PACS numbers: 21.60.Cs, 21.10.Dr, 21.30.Fe, 27.20. +n
Various methods exist to solve A # 4 systems with real-
istic interactions [1–4]. Beyond A � 4, the Green’s func-
tion Monte Carlo (GFMC) method is the only approach for
which exact solutions of systems with A # 8 have been
obtained thus far [4]. These results are generally obtained
for local r-space potentials.

For both few-nucleon systems and the p-shell nuclei we
apply the no-core shell model (NCSM) approach [5–7].
We have previously used this ab initio method to solve the
A � 3, 4 bound-state problems [6], as well as the low-lying
spectroscopy of 12C [7]. Our approach is sufficiently
flexible that we can treat nonlocal potentials, such as
CD-Bonn [8]. We note that the CD-Bonn produces more
accurate binding energy (BE) for A � 3 and A � 4
systems, while the local AV18 NN potential [4] seems
to be more accurate in nuclear matter [9]. In this Letter,
we present results for 6Li and 6He obtained with the
nonlocal CD-Bonn NN potential achieving reasonable
convergence in model spaces comprising up to 12 major
harmonic oscillator (HO) shells. One of our goals is
to achieve sufficient predictive power to shed light on
the controversy over whether a soft dipole is present in
6He [10,11]. We also remark that nonlocal potentials are
likely to become more important as they are derived by
effective-field theories based on QCD [12].

In the NCSM, we start from the intrinsic two-body
Hamiltonian for the A-nucleon system HA � Trel 1 V ,
where Trel is the relative kinetic energy and V is the sum
of two-body nuclear and Coulomb interactions. Since we
solve the many-body problem in a finite HO basis space,
-1
TABLE I. NCSM results for the ground-state energies, in MeV, of 3H, 3He, and 4He. Our
estimated uncertainties in the last digit(s) are given in parentheses. The MT-V and the AV80

calculations do not include the Coulomb interaction.

NN pot MN MT-V CD-Bonn AV80 AV18

3H 28.385�2� 28.239�4� 28.002�4� 27.75�2� 27.61�1�
3He 27.249�4� 26.90�1�
4He 229.94�1� 231.28�8� 226.30�15� 225.80�20�
0031-9007�01�87(17)�172502(4)$15.00
it is necessary that we derive a model-space dependent
effective Hamiltonian. For this purpose, we perform a uni-
tary transformation [6,7,13,14] of the Hamiltonian, which
accommodates the short-range correlations. In general, the
transformed Hamiltonian is an A-body operator. Our sim-
plest, yet nontrivial, approximation is to develop a two-
particle cluster effective Hamiltonian, while the next
improvement is to include three-particle clusters, etc. The
effective interaction is then obtained from the decoupling
condition between the model space and the excluded
space for the two-nucleon transformed Hamiltonian.
The resulting two-body effective Hamiltonian depends
on the nucleon number A, the HO frequency V, and
Nmax, the maximum many-body HO excitation energy
defining the model space. The effective interaction
approaches the bare interaction for Nmax ! `.

To gauge convergence, we aim for independence of basis
space parameters and compare with results of other meth-
ods. Our method is not variational so the neglected effects
may contribute with either sign to total BE.

As a test case we solved the A � 3 and 4 systems em-
ploying a translationally invariant HO basis [6] with the
semirealistic Minnesota (MN) [15] and MT-V [16] NN
potentials, as well as the realistic potentials CD-Bonn [8],
AV18, and AV80 [4] (see Table I). For the A � 3 systems,
we used basis spaces up to 50h̄V (Nmax � 50), while our
A � 4 results were obtained in basis spaces up to 18h̄V

using, for the most part, two-body effective interactions.
For 4He with AV80 or AV18, this was insufficient, and for
AV80 we used the three-body effective interaction, which
© 2001 The American Physical Society 172502-1
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FIG. 1. Calculated ground-state energy of 6Li using the MN
potential (upper panel) and the CD-Bonn NN potential (lower
panel). Results obtained in 0h̄V 10h̄V basis spaces in the
range of HO frequencies of h̄V � 8 27 MeV are presented.

improved convergence. Overall, our A � 3 and A � 4 re-
sults are in excellent agreement with other exact methods,
as is exhibited in the comparison in Table I with results
presented in Refs. [15,17] and references therein.

To solve for the properties of 6Li and 6He, we em-
ploy the m-scheme many-fermion dynamics code [18]. At
present our calculations are limited to Nmax # 10 where
the basis dimension reaches 9 692 634.

We test our method for A � 6 using the semirealistic
MN potential. In the upper panel of Fig. 1, we show
the frequency dependence of the 6Li ground state from
h̄V � 8 27 MeV. Starting from the 2h̄V space we find
a uniform behavior and achieve reasonable convergence at
10h̄V. The BE in the flat region around h̄V � 15 MeV
reaches 234.48�26� MeV, with the uncertainty estimated
as the difference from the 8h̄V result. This result agrees
well with 234.59 MeV obtained with the stochastic
variational method (SVM) [15].

In the lower panel of Fig. 1, we present the results using
the CD-Bonn NN potential including Coulomb. Here, the
trends are more complex. The flat regions still expand and
converge but shift to lower frequency with increasing Nmax.
The overall frequency dependence is stronger than found
with the MN potential. The trends of our 6Li MN and
172502-2
TABLE II. NCSM, GFMC, and SVM results for the 6Li
ground-state energies and point-proton rms radii, excitation
energies, and quadrupole and magnetic moments using the
MN, AV80, and CD-Bonn NN potentials. The AV80 results do
not include the Coulomb interaction. The NCSM ground-state
energies in the upper part are deduced from the investigation
of least dependence on HO frequency. In the lower part of
the table we show the 6Li 10h̄V NCSM results obtained with
h̄V � 13 MeV. The rgs,p uncertainty is estimated from its HO
frequency and basis size dependence. The experimental values
are from Ref. [20].

6Li Egs�110� [MeV] NCSM Comparison

MN 234.48�26� 234.59 (SVM)
AV80 230.30 229.70�5� (GFMC)

CD-Bonn 229.34�60� 231.995 (Expt)

GFMC NCSM NCSM
6Li AV80 AV80 CD-Bonn Expt

rgs,p [fm] 2.50(1) 2.16� 125
29 � 2.16� 125

29 � 2.32(3)
Qgs [e fm2] 20.27�8� 20.069 20.042 20.083
mgs [mN ] 10.823�1� 10.845 10.847 10.822

Ex�310� [MeV] 3.21(7) 2.909 2.841 2.186
Ex�011� [MeV] 3.94(8) 3.526 3.330 3.563
Ex�210� [MeV] 4.10(6) 4.490 4.610 4.310
Ex�21

1 1� [MeV] 5.98(8) 6.039 5.975 5.366
Ex�11

2 0� [MeV] 6.479 6.544 5.65
Ex�21

2 1� [MeV] 9.216 9.199
Ex�111� [MeV] 9.895 9.937

4He results support taking our best result from the largest
model space in the region with minimal dependence on the
HO frequency. Thus, our best result for 6Li with CD-Bonn
is for h̄V � 12 13 MeV, i.e., BE � 229.34 MeV.

To obtain a realistic estimate of the uncertainty in our
BE, we solved 6Li using the AV80 NN potential without
Coulomb, where the solution, 229.70�5� MeV, is known

FIG. 2. Experimental and theoretical positive-parity excitation
spectra of 6Li. Results obtained in 0h̄V 10h̄V basis spaces
using the CD-Bonn NN potential with h̄V � 13 MeV are pre-
sented. The experimental values are from Ref. [20].
172502-2
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TABLE III. The NCSM 6Li E2 transitions, in e2 fm4, and
the 6He ground-state and excitation energies, in MeV, point-
nucleon rms radii, in fm, E2 transitions, in e2 fm4, E1
transitions, in e2 fm2 obtained using the CD-Bonn NN potential
and the HO frequency h̄V � 13 MeV in the 6h̄V 10h̄V
basis spaces. The Gamow-Teller (GT) transitions were obtained
in the 8h̄V space. The negative-parity excitation energies
are relative to the corresponding 12

1 1 state. The experimental
values are from Ref. [20].

6Li 6h̄V 8h̄V 10h̄V Expt

B�E2; 110 ! 310� 8.166 9.136 10.221 21.8(4.8)
B�M1; 011 ! 110� 15.510 15.351 15.186 15.42(32)
B�E2; 210 ! 110� 3.414 3.989 4.502 4.41(2.27)
B�M1; 211 ! 110� 0.034 0.041 0.037 0.150(27)

6He 6h̄V 8h̄V 10h̄V Expt

Egs�011� 226.414 226.764 226.709 229.269
rgs,p 1.747 1.754 1.763 1.72(4)
rgs,n 2.281 2.323 2.361 2.59(4)

Ex�21
1 1� 2.712 2.596 2.529 1.80

Ex�21
2 1� 6.359 6.057 5.786

Ex�111� 7.204 6.848 6.504
Ex�01

2 1� 9.809 9.170 8.539

B�E2; 01 ! 21
1 � 0.735 0.889 1.056

B�E2; 01 ! 21
2 � 0.151 0.188 0.222

6He 5h̄V 7h̄V 9h̄V

E�12
1 1� 216.463 218.209 219.269

Ex�22
1 1� 0.823 1.011 0.939

Ex�12
2 1� 3.783 3.553 3.296

Ex�02
1 1� 3.604 3.700 3.528

Ex�42
1 1� 5.567 5.501 5.161

Ex�12
3 1� 6.251 5.887 5.449

Ex�22
2 1� 6.533 6.245 5.824

Ex�32
1 1� 7.438 6.860 6.336

Ex�12
4 1� 9.284 8.201 7.470

Ex�12
5 1� 10.775 10.386 9.586

Ex�12
6 1� 12.293 11.420 11.250

4h̄V ! 5h̄V 6h̄V ! 7h̄V 8h̄V ! 9h̄V

B�E1; 01 ! 12
1 � 0.308 0.353 0.388

B�E1; 01 ! 12
2 � 0.080 0.083 0.089

B�E1; 01 ! 12
3 � 0.394 0.319 0.324

B�E1; 01 ! 12
4 � 0.0005 0.0004 0.0006

B�E1; 01 ! 12
5 � 0.0015 0.0000 0.0000

B�E1; 01 ! 12
6 � 0.0012 0.0007 0.0003

6Li ! 6He CD-Bonn h̄V�13 MeV
NCSM

Expt

B�GT; 110 ! 01
1 1� 1.770 1.576(5)

B�GT; 110 ! 21
1 1� 0.001

B�GT; 110 ! 21
2 1� 0.055

B�GT; 110 ! 111� 0.027
B�GT; 110 ! 01

2 1� 0.048

from the GFMC method [4,19]. As for 4He, we obtain a
stronger frequency dependence for AV80 than for CD-Bonn
indicating slower convergence. Our 10h̄V6 Li result for
AV80 (no Coulomb) gives a BE of 230.30 MeV. We use
this and the above GFMC result to infer a conservative
172502-3
FIG. 3. Positive- and negative-parity excitation spectra of
6He. Results obtained in 7h̄V 10h̄V basis spaces using the
CD-Bonn NN potential with h̄V � 13 MeV are presented.
The 7�9�h̄V excitation energies are relative to the 6�8�h̄V
ground state. The arrows indicate strong E1 and charge transfer
transitions. See text and Tables III and IV for details.

estimate of the uncertainty in our CD-Bonn ground-state
energy; i.e., we quote BE � 229.34�60� MeV.

We note that CD-Bonn provides significantly more BE
for 6Li than does AV18, 226.89�10� MeV [4,19]. Yet, the
experimental value is 231.995 MeV [20], so CD-Bonn un-
derbinds (upper part of Table II) by about the same amount
as it underbinds 4He (Table I).

In Fig. 2, we compare our calculated 6Li excitation
spectra obtained using the CD-Bonn NN potential in
model spaces from 0h̄V to 10h̄V with experiment. In
Table II, we also show our 10h̄V levels obtained using
the AV80 together with the GFMC results [19]. Here, we
utilize h̄V � 13 MeV which lies in the range where the
largest basis space yields results least sensitive to h̄V, as
seen in Fig. 1 for the CD-Bonn case. We note that the
CD-Bonn spectrum, as well as the AV80 spectrum, ex-
hibits good stability for the low-lying states for Nmax $ 4.
The higher lying states are broad resonances so their
movement is not unexpected. Although the level ordering
is excellent, we see that the calculated spectrum does not
fully agree with experiment. The theoretical 310 state
is too high and the splitting between the 210 and 310
states is smaller than observed. On the other hand, we
obtain reasonable agreement between our AV80 excitation
spectra with that obtained with GFMC. Consequently, we
conclude that the CD-Bonn NN potential cannot by itself
reproduce the low-lying experimental spectrum of 6Li.
However, CD-Bonn is a slight improvement over the
Argonne potentials, in that the 310 state is lower and
the spin-orbit splitting between the 210 and 310 states
is larger. We note, though, that our calculation produces
a larger spin-orbit splitting for the AV80 than the GFMC
calculation does. This could perhaps be attributed to an
incomplete convergence of the 210 state with increasing
basis space.
172502-3
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TABLE IV. The NCSM 6Li ! 6He representative charge
transfer matrix elements squared and divided by 2Ji 1 1. See
the text for details.

6Li ! 6He DS � 0 �DS � 1��0� �DS � 1��1� �DS � 1��2�

110 ! 12
1 1 0.024 0.157 0.287 0.329

110 ! 12
2 1 0.061 0.0004 0.009 0.347

110 ! 12
3 1 0.009 0.043 0.207 0.406

110 ! 12
4 1 0.294 0.181 0.056 0.081

110 ! 12
5 1 0.004 0.083 0.034 0.009

110 ! 12
6 1 0.083 0.069 0.053 0.106

In Table III, we present results for electromagnetic tran-
sitions for 6Li and 6He obtained using h̄V � 13 MeV in
basis spaces from 6h̄V to 10h̄V. We see that the E2
transitions are not converged and that the use of effective
operators, as discussed in Ref. [7], is necessary and will be
done in the future. Similarly, our point-nucleon rms radii
increase with the basis size for both 6Li and 6He. On the
other hand, the M1, E1, and the Gamow-Teller transitions
show better stability and agree reasonably well with ex-
periment. This gives us confidence to address the question
of soft-dipole modes in 6He.

Recently, a charge exchange �7Li, 7Be� reaction on 6Li
showed evidence of a soft-dipole mode in 6He [10]. In
particular, a strong DL � 1 spin-flip transition was found
concentrated at about 4 MeV of excitation in 6He, while
the DL � 1 spin-nonflip transition excited a giant dipole
resonance analog state at about 8.5 MeV. Similarly, in
the �t, 3He� reaction, a broad asymmetric structure at
Ex � 5 MeV dominated by dipole states was reported in
Ref. [11]. We find very strong E1 transitions from the
6He ground state to the 12

1 1 and 12
3 1 states (Table III

and Fig. 3). In order to discuss DL � 1 charge transfer
strength from 6Li to 6He including spin selectivity, we
introduce the operators rY1t2 (DS � 0) and �rY1s��K�t2

(DS � 1). Our results, obtained using the 8h̄V ! 9h̄V

basis, are tabulated in Table IV and schematically shown
in Fig. 3. We observe that the DS � 1 charge transfer
transition is mostly divided between the 12

1 1 and 12
3 1

states, which are separated by about 5.5 MeV. On the other
hand, the DS � 0 charge transfer transition is concen-
trated in the 12

4 1 state, which is a couple of MeV higher
in excitation energy. This complex behavior of the dipole
states is consistent with experiment if these levels are
shifted a few MeV lower in the excitation spectrum. It is
very reasonable to expect such a shift as the overall trend of
the dipole states is to decrease in excitation energy with in-
creasing Nmax (Table III and Fig. 3), which contrasts with,
e.g., the 21

1 1 state stability and suggests that the negative-
parity states are rather broad resonances. Consequently,
our results tend to support the soft-dipole mode interpre-
tation of the experimental observations in Ref. [10].
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