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Given a single j-shell Hamiltonian, the algebraic conditions for conservation of seniority are derived
from a quasispin tensor decomposition of the two-nucleon interaction. This makes it possible to construct
useful solvable and partially solvable shell-model Hamiltonians with eigenstates classified by a spectrum
generating algebra. Applications are made to the low-lying energy levels of the N � 50 nuclear isotones.
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A model is said to be solvable if its energy levels can
be determined analytically and partially solvable if some
of its energy levels can be determined analytically [1].
Solvable and partially solvable models are important in
both physics and mathematics. Besides their direct use
to explain physical phenomena, such models are valuable
in physics for testing approximate many-body theories. In
mathematics, they provide a framework for studying re-
lated systems of solvable and partially solvable differential
equations.

A model may be solvable, for example, because its
eigenstates are identified completely by the quantum num-
bers of a subgroup chain. Likewise a model may be par-
tially solvable because a set of quantum numbers uniquely
defines a subset of so-called multiplicity free states. Mod-
els described by Alhassid and Leviatan [2] as having a
partial dynamical symmetry are of the latter type. The
possibility of deriving the energies of general multiplicity-
free states by (hopefully simple) algebraic methods poses
an interesting and significant challenge.

The models we consider have physical applications in
nuclear physics to singly closed shell nuclei. It is under-
stood that, for such nuclei, the J � 0 pairing interaction
is the dominant component of the nuclear interaction. For
many shell model calculations, it is appropriate therefore to
adopt pair-coupled basis states in which the pairing interac-
tion is diagonal; such basis states are classified by seniority
quantum numbers [3]. Evidence for the dominance of the
pairing interaction in nuclei is provided, for example, by
the low-energy spectra of even closed-shell-plus-two nu-
clei such as shown for 92Mo in Fig. 1. The 92Mo spec-
trum shows that the J � 0 two-nucleon state is lowered
more than the J fi 0 states. However, although smaller,
the interactions in the J � 2 and other J fi 0 pair states
are non-negligible. For two-nucleon states, J fi 0 interac-
tions are easily included. But, for many particles they mix
states of different seniority and destroy the simplicity of
the algebraically solvable pair-coupling model.

In fact, it is known from the work of Racah in atomic
spectroscopy [4] that seniority remains a good quantum
number for any two-body interaction acting within a j sub-
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shell when j # 7�2. We show that seniority is also con-
served for a wide range of two-body interactions for larger
values of j. Within a single j shell, there are �2j 1 1��2
linearly independent two-body interactions. We find that
linearly independent combinations of these interactions
can be found such that all but one conserve seniority for
9�2 # j # 13�2 and all but two conserve seniority for
15�2 # j # 19�2. In general, the interactions that do not
conserve seniority are a small fraction of the total. This
makes it possible to construct realistic solvable and par-
tially solvable single-shell models.

In the context of a single-j shell model, states are
described as multiplicity free if they are uniquely defined
by seniority and angular momentum quantum num-
bers. For example, seniority-two states are multiplicity
free as are the states of largest angular momentum,
J � Jmax, and next largest, J � Jmax 2 2, of any se-
niority. The existence of multiplicity-free states suggests
that the Schrödinger equation for a seniority-conserving
Hamiltonian in a single-j shell should be partially solvable.
This turns out to be the case. However, while analytic
expressions may exist for multiplicity-free states, it does
not appear to be easy to determine them, in general. We
give here expressions for the seniority-two states and the
states of J � Jmax and Jmax 2 2 of any seniority.

Energy levels for all states can be computed numeri-
cally by diagonalization of the Hamiltonian when j is not
too large. Such calculations are facilitated by use of the
representation theory of the unitary symplectic algebra,
USp�2j 1 1� [7,8]. This is discussed briefly below but
determination of the matrix elements of the USp�2j 1 1�
irreps, in the physical angular momentum basis, is deferred
to a following paper.

The SU(2) quasispin algebra for nucleons of a single
type in a single j shell is spanned by the operators
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FIG. 1. Low-energy spectra of
N � 50 isotones fitted with a
seniority conserving interaction
for 1g9�2-shell configurations.
where �ay
jm, ajm� are creation and annihilation operators

for a single nucleon (e.g., neutron) satisfying the fermion
anticommutation relations

�ajm, a
y
jn� � dmn , (2)

and
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m a
y
jmajm is the nucleon number operator and V �

1
2 �2j 1 1�. Note that the annihilation operator ajm with
superscripts is the Hermitian adjoint of the creation opera-
tor a

y
jm. The operator ajm with subscripts is the m compo-

nent of a spherical tensor. The quasispin operators satisfy
the usual SU(2) commutation relations

�Ŝ1, Ŝ2� � 2Ŝ0, �Ŝ0, Ŝ6� � 6Ŝ6 . (4)

States of a single j shell can now be classified by their
SU(2) quasispin �S, S0� and angular momentum �J, M�
quantum numbers. The quasispin quantum numbers are
related to seniority y (the number of unpaired particles)
and the number n of particles by
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1
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1
2

�n 2 y� . (5)

The SU(2) quasispin algebra can also be used to classify
the second quantized operators of a j shell as quasispin
tensors [6]. The fermion operators transform into one an-
other as components of a quasispin S � 1�2 tensor;
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For even J, the pair operators �ÂJM , ĈJM , B̂JM�, defined by
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Ĉ0 �
1
2

��ay
j ≠ aj�0 1 �aj ≠ a

y
j �0� �

s
2
V

Ŝ0 ,

B̂JM �
1
p

2
�aj ≠ aj�JM ,

(7)
172501-2
are the �1, 0, 21� components of a quasispin S � 1 tensor
and the operators �ĈJM ; J odd� are quasispin scalars [5].

A two-body interaction, acting within a � j�n configura-
tion space, has the standard expansion

V � 2
1
4

X
J

�J�VJ �ÂJ ≠ B̂J�0 , (8)

where �J� �
p

2J 1 1 and

V J � � j2; JMjV jj2; JM	 . (9)

The �ÂJ ≠ B̂J�0 operators are linear combinations of the
operators

X0�J� � �ÂJ ≠ B̂J�0 2 �ĈJ ≠ ĈJ �0 1 �B̂J ≠ ÂJ�0 ,

X1
0 �J� � �ÂJ ≠ B̂J�0 2 �B̂J ≠ ÂJ �0 ,

X2
0 �J� � �ÂJ ≠ B̂J�0 1 2�ĈJ ≠ ĈJ�0 1 �B̂J ≠ ÂJ�0 ,

(10)

where X0�J� is a scalar, X1�J� a vector, and X2�J� a
rank-two quasispin tensor. However, the XS

0 �J� operators
are not all linearly independent and most of those that are
do not mix seniority. For example, the vector operators

X1
0 �J� � �B̂J , ÂJ �0 �

�J�
V

�n̂ 2 V� , (11)

are all proportional to one another and diagonal in any
basis of well-defined nucleon number.

The relationship between the �ÂJ ≠ B̂J �0 and XS
0 �J�

operators becomes explicit if the operators �B̂J ≠ ÂJ �0
and �ĈJ ≠ ĈJ �0 are normal ordered by means of the
relationships

�B̂J ≠ ÂJ�0 � �ÂJ ≠ B̂J�0 1
�J�
V

�n̂ 2 V� , (12)
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n̂, for J fi 0 ,

(13)

where

MV
Jg � 2�J� �g� W � jjjj; gJ� , (14)

and g runs over the even integer values from 0 to �2j 2 1�.
It follows that, to within constants and terms linear in the
172501-2
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number operator,

X
g

�MV
Jg 2 2dJg� �Âg ≠ B̂g�0 � 2X0�J� 1 · · · , (15)

X
g

�MV
Jg 1 dJg� �Âg ≠ B̂g�0 � X2�J� 1 · · · . (16)

Claim.—The eigenvalues of the matrix MV are all equal
to 21 or 2. Let p21 and p2 denote the number of eigenval-
ues having values 21 and 2, respectively. Then, to within
constants and terms linear in the number operator, p21

linearly independent combinations of the 2V operators
��ÂJ ≠ B̂J�0; J � 0, . . . , �2j 2 1�� are quasispin scalars,
and p2 linearly independent combinations are rank-two
quasispin tensors.

Proof.—There are V � �2j 1 1��2 linearly inde-
pendent two-nucleon interactions. Consider the linear
combinations of �Âg ≠ B̂g�0 operators which are eigen-
vectors of MV. It follows from Eqs. (15) and (16) that, to
within constants and terms linear in the number operator,
the eigenvectors with eigenvalues not equal to 2 are
quasispin scalars, and those with eigenvalues not equal to
21 are components of rank-two tensors. The implication
172501-3
is that every eigenvalue of the matrix MV is either equal
to 2 or 21. Diagonalization of MV confirms that this is
indeed the case. Therefore p21 1 p2 � V and there are
p21 linearly independent quasispin scalars and p2 linearly
independent rank-two tensors.

Now observe that the operator X2
0 �J � 0� is a com-

bination of quasispin operators �Ŝ6, Ŝ0� and so, even
though it is a component of an S � 2 quasispin tensor,
it does not mix states of different seniority. Linear com-
binations of the remaining p2 2 1 linearly independent
S � 2 operators will, in general, mix seniority. This
means that a two-body interaction must satisfy p2 2 1
constraint conditions in order that it should conserve
seniority.

Diagonalization of the matrix MV confirms that, for j #

7�2, all two-body interactions conserve seniority and that
for 9�2 # j # 13�2 there is only one constraint condition;
for 15�2 # j # 19�2, there are two constraint conditions.
Thus, within a single j shell, seniority is a good quantum
number for a wide range of interactions. The eigenvectors
of the matrix MV show that, to conserve seniority, the
two-body matrix elements, defined by Eq. (8), must satisfy
the following linear relationships (computed using Maple
with exact arithmetic):
for j � 9�2, 65V 2 2 315V 4 1 403V 6 2 153V 8 � 0 , (17)

for j � 11�2, 1020V 2 2 3519V 4 1 637V 6 1 4403V 8 2 2541V 10 � 0 , (18)

for j � 13�2, 1615V 2 2 4275V 4 2 1456V 6 1 3196V 8 1 5145V 10 2 4225V 12 � 0 . (19)
The first of these equations was derived previously by
Talmi [3] as the condition that the seniority-mixing ma-
trix element of the Hamiltonian should vanish between
seniority-one and three states of a � j � 9�2�3 configu-
ration. It is now seen that this condition and similar
conditions for j � 11�2 and j � 13�2 are sufficient to
ensure that seniority is conserved for all of the correspond-
ing single-shell states.

Energy eigenvalues for the above seniority-conserving
models are obtained by the following theorem:

Theorem (Talmi [3]).—Any Hamiltonian with senior-
ity-conserving two-body interactions acting within a single
j shell can be expressed in the form

H � ´n̂ 2 GŜ1Ŝ2 1 V0 , (20)

where V0 is a linear combination of the ��ĈJ ≠ ĈJ �0; J �
1, 3, 5, . . .� operators.

The utility of this theorem arises from the fact that it
expresses the Hamiltonian in terms of the infinitesimal
generators �Ŝ6, Ŝ0� of the SU(2) quasispin group and
those of the group USp�2j 1 1� of seniority-conserving
one-body unitary transformations. The latter, being the
quasispin scalar operators �ĈJM � �ay ≠ a�JM ; J � 1,
3, 5 . . . , 2j�, commute with elements of the SU(2) qua-
sispin algebra. Moreover, it is known [8] that the sum of
the Casimir invariants of USp�2j 1 1� and SU(2) takes a
constant value throughout the Hilbert space of the single
j shell model. This means that the irreps of USp�2j 1 1�
are paired with unique irreps of SU(2) and vice versa. It
also means that the states of a given particle number and
seniority span a USp�2j 1 1� irrep. In the language of
Howe [9], USp�2j 1 1� and the SU(2) quasispin group
form a so-called dual pair.

One linear combination of the �ĈJ ≠ ĈJ�0 operators is
the second-order Casimir invariant of USp�2j 1 1� which,
as noted above, is linearly related to the Casimir invari-
ant Ŝ ? Ŝ of the SU(2) quasispin algebra. Another is the
Casimir invariant, Ĵ ? Ĵ ~ �Ĉ1 ≠ Ĉ1�0, of SU�2�j. Since,
the number p1 of linearly independent scalars is equal
to three for j � 7�2 and j � 9�2, it follows that, one
additional linearly independent scalar is needed for j �
7�2 or 9�2; it can be taken as �Ĉ3 ≠ Ĉ3�0. For j �
11�2, a second operator, e.g., �Ĉ5 ≠ Ĉ5�0, is needed and,
for j � 13�2, a third operator is needed, etc.

The Casimir invariant Ŝ ? Ŝ of the quasispin algebra has
values s�s 1 1� given in terms of seniority by

4s�s 1 1� � j� j 1 3� 1
5
4

2 y�2j 1 3 2 y� . (21)

It follows that, if the eigenstates of the Hamiltonian (20)
are labeled �jNryJM	�, where N is the nucleon number
and r a multiplicity index, then the corresponding exci-
tation energies are independent of N . For example, for
j � 9�2 and N even, they are given by
172501-3
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ENryJ � EN0 1 aJ�J 1 1� 1 by�2j 1 3 2 y� 1 cZryJ , (22)

where ZryJ is an eigenvalue of �Ĉ3 ≠ Ĉ3�0�
p

7.
By computer calculations (cf. following paper for details) the eigenvalues of �Ĉ3 ≠ Ĉ3�0�

p
7 for the multiplicity-free

states of y � 2 are determined to be

Z2J � 2
4J�J 1 1�

�x 1 4� �x 1 3� �x 1 2� �x 1 1�x�x 2 1� �x 2 2�
3 �6x4 1 24x3 2 3�5J�J 1 1� 1 4�x2 2 6�5J�J 1 1� 1 12�x 1 2�5J2�J 1 1�2 1 20J�J 1 1� 1 12�� , (23)

where x � 2j. For arbitrary seniority, the ZyJ eigenvalues are found for the states of J � Jmax � y�x 2 y 1 1��2 and
J � Jmax 2 2 to be

ZyJmax �
2y�x 2 y 1 1�

�x 1 4� �x 1 3� �x 1 2� �x 1 1�x�x 2 1� �x 2 2�
3 �yx5 2 11y2x4 1 5yx4 1 12x4 1 45y3x3 2 44y2x3 2 48yx3 1 48x3 2 85y4x2 1 135y3x2

1 102y2x2 2 164yx2 2 24x2 1 75y5x 2 170y4x 2 85y3x 1 292y2x 1 12yx 2 144x 2 25y6

1 75y5 1 25y4 2 175y3 2 24y2 1 124y 1 48� (24)

Zy,Jmax 22 �
21

�x 1 4� �x 1 3� �x 1 2� �x 1 1�x�x 2 1� �x 2 2�
3 �y2x6 2 12y3x5 1 6y2x5 2 36yx5 1 56y4x4 2 60y3x4 1 593y2x4 2 180yx4 1 48x4 2 130y5x3

1 224y4x3 2 2774y3x3 1 2332y2x3 2 432yx3 1 192x3 1 160y6x2 2 390y5x2 1 5588y4x2

2 8082y3x2 1 3376y2x2 2 576yx2 2 336x2 2 100y7x 1 320y6x 2 5100y5x 1 10728y4x

2 7664y3x 1 2104y2x 1 48yx 2 1056x 1 25y8 2 100y7 1 1730y6 2 4840y5 1 5129y4

2 2308y3 1 28y2 1 336y 1 1152� . (25)
These are complicated but precise algebraic expres-
sions. Algebraic expressions for the expectations of �ĈJ ≠
ĈJ �0 for other values of J and other states could be even
more complicated. Thus, although the above seniority-
conserving models may be exactly solvable in principle
for many multiplicity-free states, it is not known how to
determine the energies of such states, in general, without
resorting to numerical (and hence approximate) methods.
This poses an interesting challenge.

Figure 1 shows the excitation energies of seniority
y � 2, and some y � 4, states of some N � 50 isotones
computed for a seniority-conserving Hamiltonian that fits
the y � 2, J � 2, 4, and 8 states. It is interesting that,
although the model predicts many more y � 4 states
than those of J � Jmax � 12 and J � Jmax 2 2 � 10
for which we have analytical results, the J � 10 and
12 states are the ones that are experimentally observed.
The results provide much better fits to the experimental
energies than those obtainable with the simple, fully
solvable, J � 0 pairing force model. In the J � 0 pairing
model all states of a nucleus of the same seniority occur
at a common excitation energy and all y � 4 states are at
approximately twice the y � 2 excitation energy.
172501-4
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