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We present a novel method for detecting nonlinearities, due to quantum electrodynamics through
photon-photon scattering, in Maxwell’s equation. The photon-photon scattering gives rise to self-
interaction terms which are similar to the nonlinearities due to the polarization in nonlinear optics.
These self-interaction terms vanish in the limit of parallel propagating waves, but if, instead of parallel
propagating waves, the modes generated in waveguides are used, there will be a nonzero total effect.
Based on this idea, we calculate the nonlinear excitation of new modes and estimate the strength of this
effect. Furthermore, we suggest a principal experimental setup.
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According to QED, the nonclassical phenomenon of
photon-photon scattering can take place due to the ex-
change of virtual electron-positron pairs. The observation
of this scattering is a long-standing experimental challenge
which has yet to be met. Photon-photon scattering is a
second order effect (in terms of the fine structure constant
a � e2�2´0hc � 1�137), and it can in standard notation
be formulated in terms of the Euler-Heisenberg Lagrangian
density [1,2]

L � ´0F 1 j�4F 2 1 7G2� , (1)

where

j �
20a2´

2
0h̄3

45m4
ec5

,

F � 1
2 �E2 2 c2B2�, G � cE ? B, and F 2 and G2 are

the QED corrections. Here e is the electron charge, c the
velocity of light, h the Planck constant, and me the elec-
tron mass. We note that F � G � 0 in the limit of par-
allel propagating waves. The latter terms in (1) represent
the effects of vacuum polarization and magnetization, and
the QED corrected Maxwell’s vacuum equations take the
classical form using

D � ´0E 1 P, H �
1

m0
B 2 M ,

where P and M are of third order in the field amplitudes
E and B, and m0 � 1�c2´0. Furthermore, they contain
terms F and G such that P � M � 0 in the limit of par-
allel propagating waves. It is therefore necessary to use
other waves in order to obtain an effect from these QED
corrections. Several attempts have been presented in the
literature over the years [3–8], where Refs. [3–6] mainly
focused on principal issues, whereas the experimental pos-
sibilities for detection have been discussed in [7,8]. Sol-
jacic and Segev concluded that, using their mechanism [7],
the detection of the QED nonlinearities will be technologi-
cally viable within 10 to 15 years, provided that the laser
power increases steadily. In this work we suggest the use
of waveguides as an experimental setup, something which,
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as far as the authors know, has not been discussed previ-
ously for this purpose. The idea of using a waveguide is to
achieve a resonant coupling between the parallel propagat-
ing waves of different frequencies. We calculate the gen-
erated electromagnetic field for a rectangular waveguide,
using the TE01 and TE10 modes as pump waves. In the
proposal for the experimental setup, the waveguide is re-
placed by a cavity, in order to prevent the convective loss
of energy, and thereby maximize the saturated amplitude
of the excited mode. The saturation level due to a finite
conductivity of the cavity walls is estimated. We find that
the excited mode can be detected even for moderate levels
of the pump mode amplitudes, i.e., for field strengths that
can be supported by the cavity walls.

In a medium with polarization P and magnetization M
the general wave equations for E and B are

1
c2

≠2E
≠t2

2 =2E � 2m0

∑
≠2P
≠t2

1 c2=�= ? P�

1
≠

≠t
�= 3 M�

∏
, (2)
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Furthermore, the effective polarization and magnetization
in vacuum due to photon-photon scattering induced by the
exchange of virtual electron-positron pairs are given by
(see, e.g., Ref. [7])

P � 2j�2�E2 2 c2B2�E 1 7c2�E ? B�B� ,

and

M � 22c2j�2�E2 2 c2B2�B 1 7�E ? B�E� .

Next we consider propagation in a rectangular waveguide
with dimensions x0 and y0 (i.e., the region 0 # x # x0,
0 # y # y0 is vacuum surrounded by walls that, as a start-
ing point, are assumed to be perfectly conducting). We
© 2001 The American Physical Society 171801-1
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assume that the TE10 and TE01 modes act as pump waves
with distinct frequencies. To lowest order (i.e., neglecting
the vacuum nonlinearities) the fields are

B1z � B̃1z cos

µ
px
x0

∂
exp�i�k1z 2 v1t�� 1 c.c. , (4a)
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µ
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(4b)
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together with v
2
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1c2 1 p2c2�x2
0 for the TE10 mode,

and
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together with v
2
2 � k2

2c2 1 p2c2�y2
0 for the TE01 mode,

where c.c. stands for complex conjugate. Here we have de-
noted the wave amplitudes, which to lowest order are con-
stants, by B̃z1 and B̃z2, respectively. Substituting the linear
expression for the fields into the cubic nonlinear terms, we
note that there will be perturbations with frequency and
wave number �v3, k3�, where the possible combinations
are �v3, k3� � �v1, k1�, �v2, k2�, �2v1 6 v2, 2k1 6 k2�,
and �2v2 6 v1, 2k2 6 k1�. If there is a small perturba-
tion (e.g., of the order of 10215) of the amplitude of any of
the original TE modes, it would probably be a too difficult
task to measure such an effect, whereas the appearance
of a distinctly new frequency, although with small ampli-
tude, will be easier to detect. We therefore concentrate on
the two latter combinations, which are physically equiva-
lent. Furthermore, if any of these combinations satisfies
the dispersion relation for a natural mode of the wave-
guide, the amplitude of this resonantly driven mode will
be much larger than the others. We therefore, for definite-
ness, choose to consider the matching condition

�v3, k3� � �2v1 2 v2, 2k1 2 k2� , (6)

where the dimensions of the waveguide are assumed to
be chosen such as to make �v3,k3� a natural mode of the
waveguide.

Using the pump modes (4) and (5), we can get source
terms in the wave equations either for a TE01 mode or for
a TM01 mode. For the latter case, however, the frequency
matching conditions and dispersions relations cannot be
171801-2
fulfilled simultaneously for real values of all wave num-
bers, and thus we consider the excitation of a TE01 mode,
i.e., we let

v2
3 � k2

3c2 1
p2c2

y2
0

.

Thus, using Eqs. (4) and (5), we can evaluate the source
terms in Eqs. (2) and (3). For a waveguide of finite
length fulfilling the boundary condition of no incoming
wave with frequency v3 at the waveguide starting point
z � 0, we then have spatial growth. The ansatz B3z �
B̃3z�z� exp�i�k3z 2 v3t�� 1 c.c. in (3) thus gives a linear
spatial growth

B̃3z�z� �
izV

2k3
B̃2

1zB̃
�
2z , (7)

provided k3 is not too small. Here the coupling constant
V is

V �
4j

´0

µ
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∂
,

and the star in (7) denotes complex conjugation.
When designing parameters for an experiment, it might

be tempting to choose parameters such that the dispersion
relation is fulfilled for k3 � 0, in which case we instead
get a quadratic spatial growth of the amplitude. How-
ever, the case k3 � 0 is not the most interesting choice
for two reasons. First, the group velocity of and thereby
the energy flux of the excited mode is proportional to k3.
Second, it is impossible for v3 . v1, v2 to hold when
k3 � 0. The reason for requiring the excited wave to have
a higher frequency than the others is that we then have
the possibility to use waveguide filtering (see below) in
order to measure the excited wave without any disturbing
signals from the pump waves. Since k3 cannot be small
as compared to 1�x0 for v3 . v1, v2 to hold, the spatial
growth in (7) may be too slow for practical purposes, and
we are therefore motivated to consider a cavity rather than
a waveguide. Since the waves propagating in positive and
negative directions are identical in that cavity, the bound-
ary conditions imply temporal rather than spatial growth.
If we assume that all waves have k . 0 (are propagat-
ing in the positive z direction) in the waveguide example,
the coupling coefficient in a cavity can be found from the
waveguide result, simply by noting that the positive propa-
gating part of the standing pump waves couples to the posi-
tive propagating part of the excited standing wave, and vice
versa. Since V is a quadratic function of the wave num-
bers, the same coupling strengths apply for standing waves
�sin�npz�L� exp�2ivt�, where L is the length of the cav-
ity, as for propagating waves �exp�i�kz 2 vt��, if we just
let the wave number be k � 6np�L where the sign cor-
responds to the direction of propagation, and n is a posi-
tive integer. For design purposes we must keep in mind,
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however, that we now have additional constraints relating
the frequencies and dimensions since the wave numbers
cannot be chosen continuously. If we let B̃z represent the
standing wave amplitude, and modify the ansatz such that
the excited amplitude depends on time, we find that the
temporal growth in a cavity is

B̃3z�t� �
itc2V

2v3
B̃2

1zB̃
�
2z .

Saturation occurs when the amplitude is large enough for
linear damping due to a finite conductivity to balance the
driving term. The saturated equilibrium amplitude is found
to be

jB̃3zeqj �
c2V

2v3G
jB̃2

1zj jB̃1z j , (8)

where G is the linear damping rate of mode 3. If the linear
damping is due to a finite conductivity s of the walls, we
have

G � U
v3R
m0c

in the regime G�v3 ø 1, where d � Re��im0sv3�1�2� is
the skindepth, R � Re�s21��d is the surface resistance of
the cavity walls, and U is a function of the geometry that
is of the order of unity.

In order to avoid problems due to the large amplitude
pump signals when trying to measure the excited mode, it
is convenient to use a slightly modified cavity rather than
an idealized cubic cavity. Such a cavity could consist of
two parts; one cavity (I), in which the signal is generated,
attached to another cavity (II), acting as a waveguide filter.
The dimensions of cavity I should be chosen such as to
keep the frequency of the excited mode above cutoff in
cavity II, whereas the pump modes should be below cutoff.
By measuring the excited signal far enough into cavity II
(in practice 30–40 pump decay lengths), the pump waves
effectively vanish, and we can forget about the disturbing
influence of the pump waves. However, note that a certain
fine tuning of the length of cavity II might be necessary
to keep a maximally efficient phase relation between the
excited eigenmode and the pump waves in cavity I.

Next, we demonstrate that the experimental model setup
gives signals that can be detected with presently available
technology. High performance, i.e., large electromagnetic
fields combined with low dissipative losses, can be found
in superconducting cavities, which among other things are
used for particle accelerator purposes [9]. Adopting data
from these experiments, we assume that the pump waves
have a field strength Ecrit � 30 MV�m, i.e., close to the
maximum that can be tolerated by the walls without field
emissions. For a cavity resistance R � 1 nV, correspond-
ing to superconducting niobium at a temperature 1.4 K and
a frequency v3 � 2 3 1010 rad�s, we find from Eq. (8)
that the saturated energy flux P3 of mode 3 is of the order
of P3 � 1026 W�m2. Here we have used the simple order
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of magnitude estimate that all wavelengths are comparable
to the dimensions x0 and y0 when evaluating V . Clearly
this energy flux is above the detection level by several or-
ders of magnitude. Note, however, the importance of the
superconducting walls for the output level of the excited
mode. For copper at room temperature, the cavity resis-
tance increases by a factor of �107 as compared to the
above example, and consequently the energy flux of the
excited mode falls by a factor �10214. In this latter case it
is questionable whether the excited signal can be detected.

To our knowledge, it has not been possible to verify the
Euler-Heisenberg Lagrangian density experimentally. The
above calculation of the QED mode coupling strength and
the subsequent estimations suggest that it can be very suit-
able to use two pump modes in a superconducting cavity
for this purpose. The parameters of the problem should be
designed such as to simultaneously fulfill the dispersion re-
lations of each mode together with the matching condition
(6). Naturally, care must be taken when drawing the con-
clusions, since there are certain effects that we have not yet
addressed. For example, in the present model the conduc-
tivity of the walls is linear, but in principle there might be
a nonlinear contribution to the conductivity that could give
rise to a small signal at the same frequency as the QED
contribution. On the other hand, to our knowledge, there
are no theoretical or experimental reports of such effects.
Second, in reality the vacuum in the waveguide will not be
perfect, and in principle this may lead to dielectric break-
down for the pump field strength considered in the above
estimate. However, we do not expect this particular effect
to be a serious threat against our proposal, since similar
electric field strengths have been reached in present ex-
periments [9], and the pump field strength that is actually
needed is much less than the one considered in the esti-
mate. Thus we conclude that it is likely that the effect of
photon-photon scattering in vacuum due to the exchange
of virtual electron-positron pairs can be measured using
existing technology.
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