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We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-
Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent
Raman processes through a (two atom) molecular intermediate state. We compare our scheme with other
recent proposals for the generation of massive entanglement of Bose condensed atoms.
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Entanglement lies at the heart of the difference between
the quantum and classical multiparticle world. It is a phe-
nomenon which facilitates quantum information and quan-
tum computing with many qubits. Recently, several inter-
esting developments have occurred in studies of massively
entangled atomic states. Based on the proposals of Mølmer
and Sørensen [1], a controlled, entangled state of 4-ions
was successfully created by the NIST ion trap group [2].
Zeilinger and co-workers prepared three entangled photon
or Greenberger-Horne-Zeilinger (GHZ) states by selecting
from two beams of entangled photon pairs [3]. Entangle-
ment between two atoms and a microwave photon was also
detected in a “step-by-step” process [4].

Of these and other related developments, the idea of
Mølmer and Sørensen [1] is especially interesting. They
proposed a direct coupling to the multiparticle, entangled
final state through a virtual, intermediate state, which was
a common (quantum) mode of the motion of all the ions.
Similar type interactions were also proposed by Milburn
[5]. Both proposals allow for the creation of massive en-
tangled states by unitary evolution, starting from certain
pure initial states.

A Bose-Einstein condensate of a dilute atomic vapor is a
convenient source of atoms, well approximated as initially
being in pure and separable states. Sørensen et al. [6] sug-
gested creating massively entangled, spin squeezed states
from a two component condensate using the inherent atom-
atom interactions. Spin-exchange collisional interactions
in a spinor condensate were also proposed as a candidate
for creating entangled pairs of atoms [7,8]. Most of these
proposals work in the two mode approximation where one
motional state is assumed for each spinor component of
condensed atoms.

Raman transitions mediated by long-range dipole-dipole
interactions have been proposed in entanglement schemes
for quantum computing [9,10]. In this Letter, we propose a
new type of coupling also based on the two atom, effective
interaction from a Raman process through intermediate,
molecular states. We show that our coupling applied to
condensate atoms can achieve both massive entanglement,
similar to that of Mølmer and Sørensen [1] and improved
spin squeezing [6–8,11].
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Consider a system (see Fig. 1) involving two, L-type
atoms whose initial and final states are described by the
same noninteracting atomic states jg� and jg0�. Transitions
between jg� and jg0� for the pair of atoms are coupled
by two laser fields (i � 1, 2, frequency vi , wave vector
�ki , ki � vi�c, and Rabi frequency Vi) through an in-
termediate excited state, which is chosen to be a bound,
molecular excited state.

We consider an excited molecular state jeb� asymp-
totically connected, for large internuclear separation, to
one ground jm�, m � g, g0 and one excited atom je�.
An example is the 02

g state, which has been extensively
discussed in the context of photoassociation of ultracold
atoms [12,13]. The recent experiment by Heinzen and
co-workers on the production of ground state molecules
from an atomic condensate by a two photon Raman
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FIG. 1. (a) The general two photon Raman scheme via an in-
termediate, excited, molecular transition. (b) Raman coupling
between two spin states is illustrated for the atomic and molecu-
lar cases. In the atomic case, single atoms can be prepared in a
coherent superposition of spin up and spin down. In the molecu-
lar case, pairs of atoms are prepared in a coherent superposition
of spin up and spin down.
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process [14] provides additional motivation to explore
our ideas experimentally. The photoassociation process
[12,13,15] used in Heinzen’s experiment relies on the
transition strength of going from a ground “free” (two
atom) to a ground “bound” (molecular) state via an inter-
mediate, excited bound (molecular) state. On the other
hand, what we desire is a transition from a ground free
to another ground free state via an intermediate, excited
bound state.

The question of whether this is possible or not for a
trapped ultracold cloud of atoms does not seem to depend
on the sample density (in the weakly interacting limit), but
will depend, to a large degree, on the trap strength and the
excited, bound state structure. That is, we can determine
the strength of the transition by considering the collision
of a pair of atoms in the combined trap and molecular
potentials and then summing over the number of pairs of
atoms available.

Assuming all trapping potentials for the ground and ex-
cited states to be harmonic, there is a separation of the trap-
ping potentials in terms of the center of mass �R and relative
coordinates �r of the two atoms. When short-range inter-
actions are approximated by their optical contact forms,
Wilkens and co-workers provide analytic solutions for the
center of mass and relative motion of two interacting atoms
inside a harmonic trap [16]. In principle we can find all
bound states in the �r potential due to the external trap-
ping potential, even with a realistic molecular interaction
potential [17]. In general one can include all relative mo-
tional states and still be able to find the effective coupling
between the selected electronic states [18]. We consider,
however, only the lowest unbound state of the relative mo-
tion j0� in the electronic ground state, a situation well ap-
proximated by Bose condensed atoms.

If we choose a state fairly deep in the excited state
molecular potential, then adjacent molecular states will be
well separated in energy and we can consider coupling to
only one intermediate bound state with vibrational quan-
tum number mb . Furthermore, for a sufficiently large de-
tuning of the coupling lasers from the excited state jmb�,
we can perform an adiabatic elimination of the excited
state. Neglecting configurations not directly involved in
the two photon process [19], the Hamiltonian for the two
atoms initially in the g state can be written as

H �
X

m�g,g0

∑ �P2

2�2M�
1 VtR� �R� 1 2h̄vmg 1 E0

∏

3 jm, m; 0� �m, m; 0j 1 VR� �R, t� , (1)

where

VR �
h̄VR

2
jh0mb j

2eiDvtei �K? �Rjg0, g0; 0� �g, g; 0j 1 H.c.

(2)

Dv � v2 2 v1, �K � �k1 2 �k2, VtR is the trapping po-
tential for the center-of-mass motion, h̄vmg is the en-
170402-2
ergy difference between the atomic states g and g or
g0 and, for simplicity, we have assumed the same rela-
tive motional state j0�, with energy E0, for the pair of
atoms in g or g0 (i.e., atoms in state g or g0 see the
same trapping potential). Since jeb� is asymptotically con-
nected with je� jm� 1 jm� je� (for m � g, g0) we can set
the dipole matrix element �di � �d0

i � �d, for the jm� to je�
transition of atom i. Then VR � V1V

�
2�2D is simply

the two photon Rabi frequency coupling between atomic
states g and g0. Typically j �k1j � j�k2j and we can use
h0mb

� �0j cos� �k1 ? �r� jmb� for both free-bound transition
amplitudes. jh0mb j

2 is essentially the Franck-Condon fac-
tor, or a measure of the strength of the free-bound transi-
tion and will vary considerably with �r for small values of
r, due to the relatively short range of the molecular inter-
actions. It is therefore important to pick the intermediate
state jmb� which results in a large jh0mb j. These values
can be determined for selected molecular states from the
results of photoassociation experiments. They can also be
computed directly if accurate potentials are available. De-
tailed discussions are given in [13,15].

For two counterpropagating waves � �K�2 � �k1 � 2�k2�
and m � g, the above result is similar to the single atom
case often referred to as Bragg diffraction [20]. The ele-
mentary process involves the simultaneous absorption and
stimulated emission of two photons. But, in contrast to
the single atom case, a pair of atoms are now involved.
Hence for Bose condensed atoms with pi � 0, this cou-
pling produces pairs of atoms in the state ajp1 � 0, p2 �
0� 1 bj �p1 � h̄ �K�2, �p2 � h̄ �K�2�. The momentum shift
per atom and the resonance (energy conservation) condi-
tion Dv are at half the values for atomic Bragg diffraction.

For a Raman process with two copropagating waves
� �k1 � �k2, �K�2 � 0� between two nearly degenerate states
g and g0 [as depicted in Fig. 1(b)], the resonance condition
is Dv � 2vg0g, twice the atomic resonance. Note that, in
this case, there is no �R dependence in VR.

We now consider many atoms in a spin 1�2 system to
investigate the extent to which Raman coupling via an
intermediate molecular state can produce spin squeezing
[11] and correspondingly massive entanglement [6]. If we
designate jg� and jg0� as j"� and j#� for spin up and down,
respectively, our Raman coupling for the two particle case
is of the form

h̄VR

2
��j"� �#j�1 ≠ �j"� �#j�2 1 �j#� �"j�1 ≠ �j#� �"j�2�

�
h̄VR

2
�s�1�

x ≠ s�2�
x 2 s�1�

y ≠ s�2�
y � , (3)

where sm�x,y,z are the Pauli matrices.
We first distinguish our coupling scheme from other

relevant models. In the original scheme of Mølmer and
Sørensen [1], the two atom coupling takes the form
1
2 h̄VRs

�1�
x ≠ s

�2�
x , a form different from ours. If the
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pairwise interaction acts indiscriminately for all pairs
of atoms, it is convenient to analyze the effect of such
couplings for many atoms in terms of a collective spin
operator Jm �

P
i s�i�

m , m � x, y, z, where the sum is over
the number of atoms N [21,22]. One can then show that
the Hamiltonian for the Mølmer and Sørensen scheme be-
comes VM �

P
i,j

1
2 h̄VRs

�i�
x ≠ s

� j�
x �

1
4 h̄VR�J2

x 2 N �.
In contrast, our scheme gives

X
i,j

h̄VR

2
�s�i�

1 ≠ s
�j�
1 1 s�i�

2 ≠ s�j�
2 � �

h̄VR

2
�J2

x 2 J2
y � .

(4)

Recently, a many body, two mode coupling scheme was
proposed by Sørensen et al. [6]. They considered a two
component (i.e., j#� and j"�) condensate weakly interacting
via s-wave collisions described by a mean field. In the ap-
proximation where each component has the same spatial
mode, the interaction in terms of the collective spin oper-
ators Jx,y,z is of the form VS �

1
2 h̄VRJ2

z .
In order to compare the various coupling schemes,

we investigate the time evolution assuming a pure initial
state with a fixed, total number of atoms N . Using the
notation of second quantization, where a

y
j and aj are the

operators for creating and annihilating a particle in state
j � j � ", #�, the collective spin operators can be written
as Jx � �ay

# a" 1 a
y
" a#��2, Jy � i�ay

# a" 2 a
y
" a#��2, and

Jz � �ay
" a" 2 a

y
# a#��2. To numerically calculate the

time evolution, we expand the wave function as jc� �PN
m�0 cm�t� jm�#jN 2 m�", where jm�j � �ay

j �mjvac��p
m!, with the initial conditions given by the cm�0�s.
For N an even integer [23], the time evolution

operator for VM takes a simple, analytical form at
VRt � p�2, producing a massive GHZ-type wave func-
tion jGHZ�N � �jN�"j0�# 1 hj0�"jN �#��

p
2, where h is

purely a phase factor. While the Mølmer and Sørensen
coupling �VM� produces perfect GHZ-type states at
selected times, the Sørensen et al. spin squeezing scheme
�VS� and our scheme [Eq. (4)], in general, do not produce
exact GHZ-type states. From numerical simulations,
however, we find that our model can produce more than
50% overlap with the state jGHZ�N at selected times (see
Fig. 2).

We can also compare the achievable spin squeezing
between our scheme [Eq. (4)] and that of Sørensen et al.
�VS�, using the squeezing parameter j2 � N�DJ �n1 �2�
��J �n2 �2 1 �J �n3�2�, where �ni , i � 1, 2, 3 are mutually
orthogonal unit vectors [6,11].

Sørensen et al. [6] have shown that j2�t . 0� , 1 for
some set of �ni’s. Their scheme �VS� is in fact the one-axis
twisting model considered by Kitagawa and Ueda earlier
[11]. In this case the problem can be solved analytically,
with the result �DJ2

�n1
�min 	 N1�3.

On the other hand, our coupling resembles the two-axis
countertwisting model of Kitagawa and Ueda [11], and has
170402-3
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FIG. 2. The time dependent probabilities jc0j
2 (solid line) and

jcN j
2 (dashed line) of being in states jN�#j0�" and j0�#jN�", re-

spectively, for (a) the Mølmer and Sørenson coupling (VM ) and
(b) our “molecular Raman” coupling [Eq. (4)]. The initial con-
ditions are cm�0� � d0m. The number of atoms in the simulation
is N � 103. The projection onto the jGHZ�N state corresponds
to jc0j

2 � jcN j
2. In (a) it is apparent that the coupling VM

produces a perfect jGHZ�N state at VRt � 4p . While in (b) it
appears that at VRt � 0.28 (indicted by the arrow) our coupling
scheme results in about 50% of the atoms in the jGHZ�N state.

to be solved numerically. In the limit of large N and with
the condensate initially in one spin state, Jz � 2N�2, one
can show that �DJ2

�n1
�min � 1�2. The optimal squeezing in

this case occurs along x̂ 1 ŷ. This result can be easily
verified by making a semiclassical approximation in the
dynamical equations for Jx and Jy . We find that the time
scale of reaching maximum squeezing is 	1��NVR� (see
also [24]). For condensates containing 106 atoms, even
with a very weak coupling VR � 1 (Hz), the maximum
squeezing is reached within a microsecond.

In Fig. 3, we show the numerically computed, minimum
squeezing parameters, j2, as a function of time for our cou-
pling scheme [Eq. (4)] and for the Sørensen et al. scheme
�VS�. In contrast to the Sørensen et al. scheme, our scheme
achieves better squeezing at an earlier time. In addition
for VS , the direction �n1 along which minimum squeezing
is observed varies with time [6,11]. While for the coupling
of Eq. (4), it is fixed along x̂ 1 ŷ [11].
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FIG. 3. The time evolution of the minimum spin squeezing
parameter j2 for (a) the coupling VS and (b) the coupling given
by Eq. (4).
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In order to realize our coupling scheme experimentally,
the molecular coupling [Fig. 1(b), right side] needs
to dominate over the atomic coupling [Fig. 1(b), left
side]. That is, we need to achieve a molecular coupling
V

M
R � V1V

�
2 jh0mb j

2�DM ¿ V
A
R � V1V

�
2�DA, where

DM�A are detunings from the molecular and atomic
intermediate states, respectively. We should also have
DM ¿ gM , the excited molecular state linewidth, to
minimize spontaneous emission, which would lead to
decoherence and loss of atoms. These constraints sug-
gest that a deep molecular bound state with significant
transition strength should be chosen in order to maximize
the detuning from the atomic transition and achieve a
sufficient detuning from excited molecular states. In
addition, if DA ¿ DM , further suppression of the atomic
transition might be possible by a suitable choice of laser
polarizations.

Another mechanism for suppressing the atomic cou-
pling with respect to the molecular coupling is the two
photon, Raman resonance detuning. For Bragg diffrac-
tion, the transition via a molecular coupling occurs at
half the detuning of the transition via an atomic coupling
(50 vs 100 kHz, respectively for sodium). If the Ra-
man transition involves changes in the internal state of the
atom, then the frequency for the Raman transition via a
molecular coupling will be at twice the frequency of the
Raman transition via an atomic coupling [see Fig. 1(b)].
For Raman transitions between Zeeman sublevels in mod-
est magnetic fields this frequency difference can be sev-
eral MHz, which would greatly suppress the single atom
transition.

There are several advantages of our coupling scheme.
The different Raman resonance frequency is a clear signa-
ture for the Raman transition via a molecular intermediate
state. In addition, for Bragg diffraction via the molecular
coupling, the atoms would move at half the speed of atoms
that have undergone atomic Bragg diffraction.

Our scheme is based on an engineered interaction
that can be turned on and off similar to the scheme of
Mølmer and Sørensen �VM�. In contrast to the Sørensen
et al. coupling scheme �VS�, our scheme works for non-
interacting ground state atoms, which can decrease the
noise due to atom-atom interactions in a U(1) symmetry
breaking condensate state. Our scheme also achieves
the same level of squeezing and the same high value of
overlap with the massive GHZ state, even as the number
of atoms is increased.

Finally, we note that our discussions above can also
be applied to a pair of a different species of atoms. For
example, Raman coupling using a molecular intermediate
state of the Li-Cs dimer could create entangled pairs of Li
and Cs.
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