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We have performed time-domain interferometry experiments with matter waves trapped in a harmonic
potential above and below the Bose-Einstein phase transition, by means of the method of separated
oscillating fields, with a variable time delay 7. We observe the oscillations of the population between
two internal Zeeman states versus the delay 7 to be rapidly depleted both below and slightly above Bose-
Einstein condensation. We give a quantitative explanation in terms of the phase evolution due to the
entanglement between the internal and external degrees of freedom.
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The question about the coherence of Bose-Einstein
condensates (BECs) [1] and the characterization of their
phase properties has drawn considerable attention in recent
literature.

The first evidence of a definite phase for weakly in-
teracting condensates dates back to the experiment of the
MIT group [2], where high contrast matter-wave interfer-
ence fringes were observed in the density distribution of
two freely expanding BECs. Subsequent experiments per-
formed at JILA [3,4] measured the relative phase of two
condensates in different internal (hyperfine) states experi-
encing almost the same trapping potential.

Other experiments have further investigated this subject
[5—8]. In particular, the NIST group has recently measured
the evolution of the spatial profile of the phase of BECs,
by using a Bragg interferometer [7].

In a recent Letter [9], we reported an experimental
method for a sensitive and precise investigation of the
interaction between two Bose-Einstein condensates [10].
Here we present an interferometry experiment performed
in the time domain to study the phase evolution of the
same system. At the same time, this work allows one to
gain a deeper insight into decoherence in Ramsey inter-
ferometry [11] with ultracold atoms across the BEC phase
transition. It is well known that Ramsey fringes are read-
ily observable with a sample at room temperature. The
reason is that Ramsey signals rely on the persistence of
coherence between two distinct atomic levels, no matter
what the state is of the particle’s center-of-mass. This is
true only when the internal and external degrees of free-
dom are uncoupled. Whenever the latter condition fails,
a depletion of the Ramsey fringes visibility can occur and
has indeed been observed [12]. Thus, the entanglement of
external and internal states of atoms trapped in a magnetic
potential is the basis for the use of the Ramsey method
to characterize the phase properties of a condensate and
a thermal cloud near BEC. In the JILA experiment [3],
such an entanglement caused the observed Ramsey fringes
in the population of the two hyperfine levels to undergo
a loss of contrast, as a consequence of the reduced spa-
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tial overlap between the two BECs, due to their mutual
repulsion.

In our experiment we assist to a similar depletion but
on a much faster time scale, of the order of tens of us,
that cannot be explained with the reduction of spatial over-
lap. We prepare, and subsequently probe the system with
a sequence of two identical radio frequency (1f) pulses,
separated by a delay time 7. The relative phase accu-
mulated by the condensates produces Ramsey fringes in
the population of each level, as a function of the delay
T. We observe a strong reduction of the fringe amplitude
even at very short times, when the condensates are still al-
most completely overlapping, due to the relative velocity
acquired by the condensates. We compare this reduc-
tion with that of a cloud of thermal atoms, at a tempera-
ture 3 times larger than the phase-transition temperature
0 ~30..

We prepare a condensate of typically 2 X 10° 8Rb
atoms in the |F = 2, my = 2) hyperfine level, confined
in a four-coils Ioffe-Pritchard trap elongated along the z
symmetry axis [13,14]. The axial and radial frequencies
for the [|2) state are w,, = 27 X 13 Hz and w,, =
27 X 131 Hz, respectively, with a magnetic field mini-
mum of 2.86 G. Then, we apply an rf pulse to split the
initial condensate into a coherent superposition of differ-
ent Zeeman |m) sublevels of the F = 2 state. The atoms
transferred in a different sublevel move away from the |2)
equilibrium position with an acceleration that depends
on their my value. Thus, the state of motion becomes
entangled with the internal atomic state.

In this experiment, we use a 24 cycles rf pulse at 2 MHz,
which quickly leaves the |2) state with 41% of the initial
number of atoms, transferring an equal part of atoms (41%)
to the |1) state, 15% to the |0), 3% to the |—1), and 0% to
the |—2) states, respectively.

Even though all five levels should be taken into account
in the early stages of the evolution (before the atoms in the
|0), | —1), and | —2) states leave the trap), the basic features
can be explained by considering only the dynamics of the
two most populated levels, i.e., |1) and |2). We will discuss
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later how the other three levels affect the overall behavior
of the system.

We describe our double condensate system by a spinor
wave function, where the upper and lower components
refer to states |2) and |1), respectively. Immediately after
the first 1f pulse, the wave function can be written as

VNo u(r; 0) < 1 >

ao i)
where \/Ng u(r) is the equilibrium wave function of the Ny
atoms of the initial |2) condensate, in the Thomas-Fermi
regime [15]. As the rf pulse is much shorter than the
oscillation periods of the harmonic trap, we could safely
take the spatial wave function u(r) to remain unchanged
and flip only the internal state.

In the subsequent free evolution, the relative phase be-
tween the two components accumulates with a rate propor-
tional to the difference of chemical potentials wy — w1.
Moreover, u(r;0) is no longer the equilibrium wave func-
tion for |2) nor for |1): The spatial wave functions evolve
as dictated by two coupled Gross-Pitaevskii equations [10]
into u(r;t) and v(r; 1), respectively.

By applying a second rf pulse, identical to the first, after
a time delay 7', we suddenly mix the two components,

oo ~NNo (u(rT)e T + ju(r;T)
P(r;T) = T(iu(r;T)e—"on " v(r;T)>, 2)

with w9 = (2 — w1)/h.

We then separate the two internal states by holding them
in the magnetic trap for a suitable time to exploit their
different dynamics. In absorption images taken after re-
leasing the trap, the two internal states appear as distinct
clouds, allowing the determination of the atom number
in each state. The fractional populations show Ramsey
fringes at frequency wq [16] (see Fig. 1).

For delay times T < 0.1 ms, i.e., much shorter than the
harmonic periods, the only relevant effect of the external
degrees-of-freedom evolution is that, due to the differen-
tial gravitational “sagging,” the |1) condensate acquires a
downward time-dependent momentum —/ig(¢). In particu-
lar, we can neglect the loss of spatial overlap arising from
the |1) displacement. As we will discuss later, this approxi-
mation is justified by the results of numerical simulations
based on the Gross-Pitaevskii equation (GPE). Then, tak-
ing u(r;T) = u(r;0), v(r;T) = iu(r;0)exp[—ig(T)y]
and given the normalization [ |u(r;0)|*>dy = 1, we have

Yt =0) = (1)

Na(T) = Noz[1 — A(T)cos(woT)],

3
with the slow time-dependent amplitude,
D) = [ 0P cog(rilar. @

The amplitude of the quadrature component vanishes be-
cause |u(r;0)|? is an even function of the y coordinate.
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FIG. 1. Experimental data: N,/(N, + Nj) fraction versus the
time delay between the two 1f pulses for T ~ 26 us. Likewise,
we have sampled several oscillation periods at different delay
times T (the inset shows all data).

The amplitude A.(T) decays as the relative velocity in-
creases and ¢~ ' becomes of the order of the vertical ex-
tension of the original condensate. Eventually, Ramsey
fringes are completely washed out. The relative displace-
ment would give the same result, but only at later times,
for T of the order of ms.

In Fig. 2 we plot the experimental data of the fringe
amplitudes for the fraction N,/(N; + N;) versus the time
delay T. To measure the fringe amplitude at 7', we sample
one fringe period with about ten points (see inset of Fig. 1).
Each of these points is averaged over a few (typically five)
experimental runs. Upon fitting with a sine wave, we
extract the amplitudes and their error bar. To compare
with the values predicted by Eq. (4), we rescale the latter
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FIG. 2. Peak-to-peak amplitude of the oscillating observable
N,/(N, + N)), i.e., the |2) condensate population normalized
to the total number of atoms in |2) and |1): experiment and
calculation (solid line, rescaled by 0.75).
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by a factor 0.75, chosen to match the experimental data
around 7 = 0. Our theoretical analysis, despite being very
simple, predicts a damping time (94 us at 1/¢) that agrees
with experimental results within 30%. However, there
appears a significant discrepancy at T = 50 us that we
cannot fully explain.

Actually, for the double condensate we can refine the
above model to include the mean-field repulsion in the
evolution of the wave functions: To this end, we nu-
merically integrate two coupled GPEs, according to the
model described in Ref. [10]. On general ground, in the
first stages of the evolution the phase of each component
can be written as a quadratic form in the spatial coordinates
[7,15], describing the center-of-mass motion (linear terms)
and the mean-field expansion/contraction in the Thomas-
Fermi regime [15] (quadratic terms). The results of the
numerical simulations, in the time range considered here,
show the following: (i) as the |2) condensate is at rest,
its phase remains almost uniform, and only for later times
(t = 0.5 ms) develops a negative curvature, due to the con-
traction caused by the transfer of atoms to the other levels;
(ii) the phase of the |1) condensate is dominated by a linear
term, representing its overall motion along the vertical y
direction,

Gilrin) = 2 [volo) + Su()]ly, 5)

where v((?) is the velocity acquired during the fall in the
trapping potential,

vo(r) = — n “’”t>, (6)

Fant (%4

and dv(r), negligible for # < 0.5 ms, is due to the mutual
repulsion between the two condensates. Thus, the Gross-
Pitaevskii (GP) simulations confirm that, at short times, the
simple model adopted above correctly describes the basic
features of the system.

The phase term (5) is responsible for washing out com-
pletely the Ramsey fringes even at very short times, when
the condensates are still almost completely overlapping [as
shown in Fig. 3 the overlap between the two wave packets
is substantial even at T as long as 0.5 ms].

Physically, in a Ramsey experiment the transfer of
population at the second interaction is driven by the
relative phase between the two involved states. When this
phase varies across the spatial extension of the wave
packet, there are regions of alternated positive and nega-
tive interference, with a vanishing net transfer of atoms.

For a thermal cloud, we can consider the system to be in
a given quantum state and then take an ensemble average
over all the accessible states. This way, we need only to
replace the time-dependent amplitude (4) with

Aa(T) = f Full ¥ coslg(T)yldr.  (7)

O {n
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FIG. 3. Overlap of the two condensates at the second rf

pulse. Density profiles along the vertical axis y of condensates
[2) (dashed line) and |1) (solid line) before the pulse, and of
condensate |1) (dotted line) immediately after. The curves
are obtained by solving the GP equations for the two-state
model in Ref. [10]. Lengths are given in units of a,, =
[i/(mw.2)]"* =094 pm; T = 0.5 ms.

where f(,; = {exp[(€py — 1)/kO] — 1}7! is the Bose
mean occupation number of the harmonic trap eigen-
state \P{n} = l/’nl(x)lﬁnz()’)‘ﬁns (Z) with energy €n} M
is the chemical potential, given by the normalization
Z{n} finy = No, and O is the temperature. By carrying
out the integration over x,z and the sum over the corre-
sponding quantum numbers nj, n3, we find

T ]
An(T
o) = 0O S (2
% [ W 0P cosla(1ay ®)
the g2(x) = >/~ x' /1% function being the result of replac-

ing the discrete sum over n1, n3 with a double integral. In
principle, one should allow for the rf pulses to act dif-
ferently on the different harmonic oscillator eigenstates as
the detuning varies. This would introduce {n}-dependent
weights in Eq. (7). However, we have verified that, for the
relevant levels at ® = 0.4 uK, these weights are equal
within a few percent.
We note here that Eq. (7) can be rewritten:

An(T) = Nio [ n(r)coslg(Tyldr. )

where n(r) is the spatial density. In this form, it is evident
that the thermal cloud behaves as a coherent wave packet,
the reason being that the displacement occurring between
the two rf pulses is much less than the thermal coherence
length (A, = h/27mk® = 0.3 wm).

The above analysis relies on the fact that, for the non-
condensed sample, where typical densities are a factor 30
lower than those of BEC, we can neglect the atom-atom
interactions and use single-particle eigenfunctions Wyy.
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FIG. 4. Peak-to-peak amplitude of the oscillating observable
N,>/(N, + Nj), for thermal atoms at ® = 0.4 uK = 30.: ex-
periment and calculation (solid line, rescaled by 0.45).

In Fig. 4 we plot the amplitude of the observed N,/
(N2 + Np) fringes for several values of the time delay
T between the two rf pulses, and we compare with the
corresponding predictions given by Eq. (7), rescaled by
a factor 0.45 to match the experimental values around
T = 0. As for the damping time, we have a satisfactory
agreement:  Besides one point lying far outside the
theoretical curve, we believe that the cause of the fringes’
loss of contrast is well understood. As for the observed
amplitudes being smaller than the predictions, we remind
that part of the atoms end up in the my = 0,—1, -2
Zeeman sublevels after the second rf pulse; as a conse-
quence, the peak-to-peak amplitude of the No/(N; + N»)
fraction cannot exceed 0.87, both for the condensates and
the thermal clouds. However, this represents only a partial
explanation of the discrepancy.

As a last remark, we point out that our system is suitable
to study the possibility of a revival of the Ramsey fringes
after the condensates have been spatially well separated.
As the center of mass of the |1) condensate undergoes har-
monic oscillations around its equilibrium position [9,10],
it comes back to rest at its initial position. According to
the above description, one should expect a revival of the
fringes in the relative population when the condensates |1)
and |2) come to overlap again with almost vanishing ve-
locity. The numerical solution of the GP equations of the
two-level model shows indeed that over time scales of tens
of ms the Ramsey fringes are characterized by collapse and
revival [17].

In summary, we have studied the Ramsey interference
of atomic clouds across the BEC phase transition, with a
system where the two involved states have equilibrium po-
sitions far apart. We have shown that the phase pattern
created on the moving wave packet by its acquired veloc-
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ity washes out the Ramsey fringes of the fractional popu-
lations well before the spatial overlap decreases. By re-
peating the same experiment on a thermal cloud at 3 times
the condensation temperature, we have observed that the
same mechanism is responsible for an even faster damping
of fringe contrast. In this respect, there is no substantial
difference between a thermal cloud and a Bose conden-
sate. The analogy with light optics is straightforward: To
observe interference between two paths, one needs only
the difference between the path lengths not to exceed the
coherence length.
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