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Specific Ion Effects: Why DLVO Theory Fails for Biology and Colloid Systems
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The classical Derjaguin-Landau-Verwey-Overbeek theory that underpins colloid and surface science
is shown to be flawed, especially at biological salt concentrations. This is in part because the disper-
sion forces acting on the ions are ignored. When these are included properly very different results are
obtained. These results have substantial implications for biological and for ordinary colloid systems at
moderate salt concentrations.
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The forces between charged objects in an aqueous elec-
trolyte solution is a central preoccupation of colloid sci-
ence. Whether the application is to membrane biology or
protein interactions, soil science, electrochemistry, poly-
mers, or mesostructured fluids, a knowledge of the forces is
crucial. The Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory of interparticle interactions [1,2] treats colloid stabil-
ity in terms of a balance of attractive van der Waals forces
and repulsive electrical double-layer forces. While there
have been many improvements (e.g., Lifschitz theory of at-
tractive forces [3,4], ion fluctuation forces [4,5], charge
regulation in the double layer [6]), the theory has remained
unchallenged for half a century. There is a huge amount of
literature devoted to force measurements, either direct via
the surface force apparatus technique of Israelachvili and
colleagues [7,8], or by atomic force microscopy, or osmotic
measurements pioneered by Parsegian [9,10]. But, except
for a few cases [9,11,12], agreement with theory is illusory
in the sense that the measurements can be accounted for
only by invoking fitting parameters to accommodate sur-
face potential or charge. There is a high degree of ion pair
and buffer specificity [9]. Forces can vary in magnitude
by a factor of 50 or more by simply changing the counter-
ion from, e.g., bromide to acetate [11]. The same problem
is mirrored in the simple experiment of bubble bubble
interactions [13], or in explaining the interfacial tension
of an electrolyte-air interface [14]. This shows up in bio-
logical and biochemical applications particularly where so-
called Hofmeister effects are ubiquitous [15,16], as indeed
they are for polyelectrolytes, and mesostructured fluids.

The current situation is clearly unsatisfactory for a num-
ber of reasons. Even with five adjustable parameters, the-
ory often disagrees with experiment at short ranges less
than, for instance, 100 Å [17]. It does not properly take
into account specific ion effects [8,9,11,], which are ubiq-
uitous in biochemistry and colloid science. Above 0.1M,
the regime of biological interest, theory loses all pretence
of predictability [15]. These problems can be resolved by
including dispersion forces acting on the dissolved ions at
the same level as electrostatic forces [18]. Interactions be-
tween charged particles, strongly dependent on specific ion
effects, can differ substantially from the DLVO results.
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Even given a fitting parameter such as effective charge
or potential, at short length scales experiments often show
substantial deviations from DLVO theory. These devia-
tions are usually accounted for by invoking a zoo of so-
called “extra-DLVO” forces [7,8]. These may be hydration
forces, hydrophobic, oscillatory, membrane fluctuations,
or water structure forces. But, any assessment of the im-
portant short range forces is impossible if they are obtained
by subtracting a wrong form for the long range forces from
an experimental force curve.

The problem lies in [18] the inconsistency built into the
DLVO theory which separates forces between particles into
double-layer and van der Waals forces. The electrostatic
forces are handled by a nonlinear Poisson-Boltzmann de-
scription or decorations thereof. The van der Waals forces
are treated in a linear (Lifschitz) theory. In the biological
regime (oil-water, high salt), the dominant part of the
interaction is precisely equivalent to an extension to two
interfaces of the Onsager-Samaras theory for the change in
interfacial tension at an air-water interface due to dissolved
salt [18]. This limiting law is incorrect except possibly at
extremely low concentrations. So, also, the DLVO ansatz,
the separation of forces, is equally invalid. Both the elec-
trostatic and the dispersion forces have to be handled at the
same level. Only then will it be possible to estimate theshort
range forces. Importantly, we can actually calculate the
dispersion forces and, hence, their effect on the forces be-
tween the particles. We now show that when ionic disper-
sion forces are included consistently the modified theory
that emerges gives quantitatively different results that can
accommodate specific ion effects. While the macroscopic-
continuum model is probably not accurate enough, it is
essential to maintain its use here to focus on the main
point. The DLVO theory has appeared to work reasonably
well for low salt concentrations (,5 3 1022M), where
electrostatics dominates. At biological concentrations,
however, electrostatics is strongly screened. There, and
in other systems with high concentrations, the dispersion
forces on the ions can be expected to dominate electro-
static forces.

The dispersion potential, in a macroscopic-continuum
model, between an ion at a distance x from an air-water
© 2001 The American Physical Society 168103-1
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interface can be well approximated by [4,18]

Udispersion�x� � B�x3, B � �n2
w 2 n2

air�a
��0�h̄vi�8 , (1)

where nw (nair) is the refractive index of water (air), h̄v

is an electron affinity for the ion, and a��0� is the static
excess polarizability of the ion in water. The static excess
polarizability is the change in polarizability of an ion com-
pared to an equivalent volume of water and can be deduced
from partial molar volumes of the bulk solutions and re-
fractive index data. The electron affinities are unknown,
but must be between an infrared and an UV frequency. In
Gaussian units a� has dimensions of volume, and a lower
bound would be, for instance, a� � 1 Å3 � 10224 cm3.
a� can in fact be much larger, e.g., for an unhydrated an-
ion of radius 2 Å, a� � 30 Å3. a� can be negative due
to electrostriction. For CH3COO2, having approximately
the same electron density as water, we expect very little
excess polarizability; for Br2 we expect large excess polar-
izability. We can thus estimate the dispersion energy.
With the parameters taken to be vi � 1015-rad�s, a� �
2 Å3, and nw � 1.33, one find that a typical value is
B � 2 3 10250 J m3. In Ref. [14] we used the dispersion
coefficients (B6) as fitting parameters. We showed that
one can accommodate surface tension changes for a large
group of salts, i.e., combinations of cations and anions,
if dispersion constants of this order of magnitude were
used. Inclusion of the dispersion potentials of the counter-
ions has a very important influence on ion density, charge
density, self-consistent potential, and on the double-layer
force. There can be very large effects on the force when
two charged surfaces come close together.

We begin by showing how to calculate the contribution
of the ions at concentration c to the free energy of interac-
tion of two parallel plates separated by a distance 2L. This
is found using the Gibbs adsorption equation. In this ex-
pression the free energy (F) is found from the internal en-
ergy (E) using a coupling constant integration that slowly
turns on the interaction [2]:

F�c, 2L� �
Z c

0

dc0

c0
E�c0, 2L� , (2)

E�c0, 2L� � 2kBT�G1�c0, 2L� 1 G2�c0, 2L�� , (3)

G6 � c0

Z 2L

0
dx�exp���2b�6ef 1 U6�x����� 2 1	 . (4)

The free energy is directly related to the separation depen-
dence of the adsorption excess G6. Here, f is the elec-
trostatic potential felt by the ions. This is the only term
involved in the basic DLVO theory which totally neglects
the possibility of other potentials acting on the ions, here
given by U6�x�. Here, we take the interaction potential
to consist of contributions from both image and dispersion
potentials. We approximate the image and the dispersion
potentials in the presence of two interfaces as
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Udispersion�x, 2L� �
∑

B6

x3
1

B6

�2L 2 x�3

∏
, (5)

and

Uimage�k, x, 2L� �
e2�S1 1 S2�

16pewe0
, (6)

where

S1 � 2 ln�1 2 D2 exp�24kL���L , (7)

S2 � D21
X̀
p�1

∑
e22k�2L�p21�1x�

2L�p 2 1� 1 x
1

e22k�2Lp2x�

2Lp 2 x

∏
. (8)

Here, D 
 �ew 2 eair���ew 1 eair� � 1, with eair and ew

being the dielectric constants of air and water. The inverse
Debye length is kD �

p
�2be2c0���e0ew�, where b �

1�kBT , kB is the Boltzmann constant, and T is the
temperature. For T � 300 K this becomes kD �
0.325��c��1�2 Å21, where �c� is the molarity of the salt
solution. Numerically, we include only the first 200 of the
infinite number of images for the image (dispersion) po-
tential. We assume a cutoff radius of 2 Å for the ions to
ensure that the potential does not diverge at either inter-
face. The potential does not diverge on the interface in a
complete theory [4].

To obtain the self-consistent electrostatic potential
�f� we need to solve the nonlinear Poisson-Boltzmann
equation:

df2�dx2 � 2e�c1 2 c2���ewe0� , (9)

where the ion concentrations are given by

c6 � c0�exp ��� 2 b�6ef 1 U6�x�����	 . (10)

There are many possible boundary conditions. Here
for the purpose of demonstration and comparison we use
the fixed potential boundary conditions: f0 � const and
df�dxjx�L � 0. We solve the Poisson-Boltzmann equa-
tion numerically using the method of relaxation. Once the
self-consistent potential is known, the integrations are per-
formed numerically to obtain the free energy. To obtain
the interaction free energy, we subtract off the free energy
at infinite separation. This quantity can be related to the
measured force ( f) between crossed cylinders (of radii R)
using the Deryaguin approximation [19]:

f�R � 2p�F�2L� 2 F�`�� . (11)

The fact that one cannot separate double-layer and dis-
persion forces causes some difficulty when comparing the
various theories, since the image effect would usually need
to be included in the double-layer force, but in fact in
a full calculation it contributes to the dispersion force.
We thus calculated three different kinds of double-layer
forces here. These are differentiated by exactly what
goes into the microscopic potential U acting on the ions.
They are (i) DLVO, i.e., U � 0; (ii) DLVO 1 images,
U � Uimage; (iii) DLVO 1 images 1 dispersion U �
168103-2
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FIG. 1. Calculated force, using the Deryaguin approximation,
between charged interfaces (100 mV) across a 0.01M salt solu-
tion. Three different cases are considered: U � 0 (dotted line),
U � Uimage (dashed line), and finally U � Uimage 1 Udispersion
(solid line).

Uimage 1 Udispersion. The image potential gives rise to one
term that cancels out one part of the ordinary dispersion
interaction (the zero frequency term) and replaces it with
a term that decays exponentially at large separations [18].
The most interesting comparison is therefore between the
latter two cases. As examples, we use values of the disper-
sion potentials which previously have been shown to give
good results for the surface tension of ionic solutions [14]
(B2 � 31 3 10250 J m3 and B1 � 21 3 10250 J m3).

We begin with a case where the DLVO theory works
well, 0.01M solution with a plate potential of 100 mV
(Fig. 1). Here, we can see that the modifications caused
by the ionic dispersion potentials are small. However,
when we increase the concentration to that of the biological
regime (0.1M, 10 mV) (Fig. 2), we find very substantial
modification of the double-layer force. This is particularly
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FIG. 2. Calculated force, using the Deryaguin approximation,
between charged interfaces (10 mV) across a 0.1M salt solution.
Three different cases are considered: U � 0 (dotted line), U �
Uimage (dashed line), and finally U � Uimage 1 Udispersion (solid
line).
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FIG. 3. Calculated force per unit area (f � 2≠F�≠d) be-
tween charged interfaces (10 mV) across a 0.3M salt solu-
tion. Three different cases are considered: U � 0 (dotted line),
U � Uimage (dashed line), and finally U � Uimage 1 Udispersion
(solid line).

true for distances less than 30 Å, where the force actu-
ally has the opposite sign. At even higher concentrations
(0.3M, 10 mV), the results are even more dramatic. When
ionic dispersion potentials are included, the force can be-
come attractive at both small and large separations with a
repulsive barrier at intermediate separations (Fig. 3). This
is similar to the secondary minimum found in ordinary
DLVO theory. However, one should note that the ordinary
electrostatic DLVO force, which this should be compared
with, is always repulsive and always decreases monotoni-
cally. The most important conclusion here is that ordinary
DLVO theory is simply wrong in the biological context. Of
course, the ionic dispersion forces affect the force between
the plates because they modify the concentration profile,
and an example is shown in Fig. 4. We note that there
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FIG. 4. Relative ion concentration profile for an 0.3M salt
solution between positively charged interfaces (f0 � 10 mV).
The counterion (anion) distribution has been marked with open
circles to distinguish between anions and cations. Three cases
are considered: U � 0 (dotted line), U � Uimage (dashed line),
and finally U � Uimage 1 Udispersion (solid line).
168103-3



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
can be very large effects on the counterion distribution. In
the ordinary DLVO theory counterions accumulate close to
the surface. At high salt concentrations, when dispersion
potentials are accounted for, there may instead be a total
depletion very close to the interface. Depending on several
factors, dispersion potentials may give rise to either accu-
mulation or depletion of ions close to an interface. How
important the effects of dispersion potentials are depends,
for instance, on the salt concentration, the magnitude and
sign of the dispersion potentials, and on the magnitude and
sign of the surface potential (surface charge). We have con-
sequently considered an air-salt solution-air system. The
extension to the interaction between, e.g., oil or mica sur-
faces is straightforward. The dispersion potentials towards
the interfaces may change both in magnitude and sign, de-
pending on the optical properties of the interacting sur-
faces, the salt solution, and the ions (consistent with the
known fact that KI adsorbs negatively at an air-water in-
terface and positively at a dodecane-water interface [20]).
This gives rise to reduced or enhanced double-layer forces.
As we have demonstrated the double-layer force may even
become attractive. Similar results have been found using
the constant surface charge boundary condition.

The main conclusion of this Letter is that, while the
traditional DLVO theory works well for low concentrations
of order 0.01M, it is often very wrong for the biological
regime, or for any system where the concentration is of
order 0.1M or higher. This has very important implications
for a whole range of colloidal problems, and also obviously
for anyone interested in modeling biological systems. This
Letter shows the undoubted importance of ionic dispersion
forces. However, in order to solve the full problem we need
to produce an analytic theory which takes into account all
the forces. The purpose of this simplification is to highlight
the effects of including dispersion potentials. Detailed
comparison with experiments can be done only if different
ions sizes are accounted for. It will also be important to
consider dissolved gas [21] and the way dispersion forces
are handled in the surface region.
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