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Molecular Dynamics Used in Radiation Therapy
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In this Letter, classical molecular dynamics is used to deal with optimization problems occurring in
intensity modulated radiation therapy. By introducing the concepts of virtual atom and virtual cluster, the
optimization process in this kind of therapy can be considered as an analogy to finding the equilibrium
configuration of a cluster. This viewpoint gives great insight into the optimization problems. To show
how the idea works, a dose-based objective function is adopted to obtain the optimized intensity profiles.
The results and high computational efficiency show that molecular dynamics is applicable clinically for
this therapy. The idea presented here also could be inspiring to other fields where optimization problems
exist.
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Methods or concepts developed in one area can some-
times be very useful in solving problems in other areas that
have no relationship with the former at first glance. Classi-
cal molecular dynamics (CMD) is a powerful tool that has
been widely applied in material science for a long time.
Since there are many examples in the literature concern-
ing the applications of CMD, we list only a few of them
as examples [1–5]. For more complete introductions on
CMD there are outstanding textbooks [6,7] that could be
referred to. In the present Letter, we find for the first time
that CMD can also be used for optimization problems in
radiotherapy. Although we deal with only the optimiza-
tion problems occurring in radiotherapy, we think the idea
presented here could be inspiring to other fields where op-
timization problems exist.

In radiotherapy, the basic principle is to deliver a radia-
tion dose to a tumor that is high enough to destroy the
tumor while keeping the dose delivered to normal tissues
as low as possible. Thus the treatment planning, that is
a process by which physicians determine the radiation
parameters according to anatomy information based on CT
or other medical images of patients, is an indispensable
part in radiotherapy [8]. In the last several years, the
development of intensity modulated radiotherapy (IMRT),
by which the intensities of rays are modulated across the
beams (as shown in Fig. 1), makes it possible to generate
a dose distribution that forms a high dose envelope closely
matching the defined targets ([9–20], and references
therein). Obviously, it is impossible to design the intensity
profiles manually by the experience of physicians or clini-
cal planners and thus an inverse treatment planning (ITP)
is required. An ITP is to optimally design radiation pa-
rameters by given tumor and normal tissues and desirable
dose distributions. This optimization process is performed
by minimizing, probably along with certain constraints,
an objective function O�I, a�, that is defined by biological
or physical considerations where I is the intensity matrix
and a is the matrix of other parameters involved. An
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essential constraint in this problem is Ii, the ith element
of I, is non-negative. Optimization algorithms that have
been used for ITP can be classified grossly as stochastic
and deterministic. Stochastic methods, such as the simu-
lated annealing method [9,16] or genetic methods [20],
are flexible and powerful methods but rarely are used
clinically because they are too computer time consuming.
Deterministic methods, such as gradient methods [11–14],
and the iterative method [18,19], are efficient but they may
suffer the problems of converging to a local minimum and
giving unphysical solutions, e.g., Ii are negative.

In this paper, we show that the optimization problems
in radiotherapy can be dealt with by classic molecular dy-
namics. In CMD, a simulated system starts from an initial
configuration in phase space and then relaxes to an equi-
librium state where the system has lowest free energy. The
motions of atoms in the simulated system follow Newton’s
law. Considering a system of total potential VT , the dy-
namics equation can be written

mi
d2ri

dt2 � fi � 2=ri VT , (1)

where ri and vi is the position and the velocity of atom i,
respectively. mi is the mass of the atom and fi � 2=ri VT

is the force on that atom. At zero temperature, the equi-
librium state is the state of lowest potential and fi is zero
for all atoms. Comparing this process to the optimization
process in ITP, we can make an analogy between O�I, a�
in radiotherapy and VT in molecular dynamics. Further-
more, we can introduce the concept of virtual atoms by
which the position and velocity of virtual atom i are Ii

and yi �
dIi

dt , respectively, where t is a virtual time. The
dynamics equation for virtual atoms i is thus read

Mi
d2Ii

dt2 � 2
≠O�I,a�

≠Ii
, (2)

where Mi is the mass of atom i to be defined below ac-
cording to characteristics of the objective function adopted.
© 2001 The American Physical Society 168101-1



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
The essential constraint Ii $ 0 is analogous to a bar-
rier of infinite height where the atoms are reflected, i.e.,
yi�t� � 2yi�t� when Ii�t� # 0. All the virtual atoms
form a virtual cluster. A virtual cluster has its stable states
because O�I, a�, as VT , includes repelling and attracting
components no matter what concrete form O�I,a� takes.
These two components come from the fact that a higher
prescription dose on target requires increasing intensities,
that means the atoms are repelled from I � 0, while a
lower or zero prescription dose on normal tissues demands
a decrease in the intensities. Compared to the simulated
annealing method, the virtual atoms in CMD move follow-
ing the dynamics equations, and thus the system reaches
its equilibrium state faster (this is important in clinical ap-
plications) than the system in simulated annealing where
the virtual atoms move randomly and make a lot of trial
and error operations. Compared to gradient methods or
steepest descent methods, because the virtual atoms have
velocities, the virtual atoms can overcome the barrier and
thus escape from the local minima.

Now we adopt a concrete objective function to show
how the above idea works. There are many objective func-
tions based on physical [9–20] or biological models ([21],
for instance) that have been proposed. Biological objec-
tive functions can give directly a biological outcome, but
they are still at a formation stage because of their empiri-
cal nature. Thus physical objective functions are most
commonly used in clinical trials. Because it is beyond the
aim of the present Letter to establish an objective function,
we adopt here a traditional dose-based objective function
that is the least square deviation of the prescription dose.
Although various constraints on this objective function
[12–14] have been proposed to limit the maximum dose
that a normal tissue can receive or to improve the dose-
volume behavior that is concerned in clinical trials, we
consider only the essential constraint Ii . 0. Moreover,
in some optimization processes with constraints, the opti-
mization of objective here occurs as an intermediate step
[12,19]. In the present viewpoint of CMD, we can handle
efficiently the optimization problem with the constraints.
We will present elsewhere results that deal with, in the
present framework, optimization problems of constraints
and with other kinds of objective functions.

The dose-based objective function is written in a discrete
form:

O�I, a� � C
NVX
n�1

wn

"
NPX
i�1

Iid
�i�
n 2 dn

#2

, (3)

where d�i�
n is dose at voxel n contributed by ray i of one

intensity unit, dn is the prescription dose at voxel n, wn is
the weight factor that represents the importance of voxel
n. NV and NP are the number of concerned voxels and
number of rays, respectively. By Eqs. (2) and (3), the force
on virtual atom j can be written
168101-2
fj � 2
≠O�I, a�

≠Ij
�

NPX
ifij

fij 2 Ij

NPX
i�1

Dij 1

NPX
i�1

Dij ,

(4)

where fij � �Ij 2 Ii�Dij , Dij �
PNP

i�1 wnd�i�
n d�j�

n , and

d
�i�
n � �d�i�

n dn�
PNP

i�1 d�i�
n �. By this equation, we have an

interesting physical picture: atom j is connected by a
spring of spring constant

PNP
i�1 Dij to a center of infinite

mass, and at the same time the atom is pulled away from
the center by an external force

PNP
i�1 Dij . The atom is

connected also to other atoms by springs of spring con-
stant Dij, and the interaction between two atoms follows
Newton’s third law. Dij represents actually the overlap
between dose distributions of two rays. Obviously, for
a given prescription dose, the intensities of two rays
that have overlap dose distributions have competitions.
Because

PNP
i�1 Dij is much larger than Dij, the movements

of atoms can be thus divided into two components of high
frequency and low frequency, respectively.

First, we neglect the low frequency component and
consider high frequency component only. The oscil-
lating period of the high frequency component is tj �q

Mj�
PNP

i�1 Dij . If we define the mass of atom j as

Mj �
NPX
i�1

Dij , (5)

then all atoms would oscillate with the same period and
they reach their equilibrium position at the same time. In
practice, we found that by this definition of atomic mass,
the convergence is reached more quickly in calculations
and the obtained intensity profiles have better smoothness.
By Eq. (4), the equilibrium position for this component
can be obtained analytically:

I
�0�
j �

PNP
i�1 DijPNP
i�1 Dij

. (6)

This first order solution for the optimization problem is
exact when there is no interaction between atoms, e.g.,
there is no overlap between dose distributions of two rays.

Because Dij is much smaller than
PNP

i�1 Dij, the low
frequency component is a relatively adiabatic movement.
By Eqs. (2) and (4), we can apply any differential scheme
used in CMD to obtain the movement trajectory of ray
intensities. Here we apply the scheme of Swope et al. [22]
that takes the form

Ij�t 1 dt� � Ij�t� 1 dtyj�t� 1
1

2Mj
dt2fj�t� , (7)

yj�t 1 dt� � yj�t� 1
1

2Mj
dt�fj�t� 1 fj�t 1 dt�� .

(8)

What should be mentioned is that O�I, a� is a potential
in the viewpoint of CMD. O�I,a� is minimized when the
168101-2
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FIG. 1. A simulated IMRT example. The dark gray region is a
simulated tumor, the light gray region is a simulated organ at risk
(OAR), and the gray region is the normal tissue. Nine coplanar
beams are applied to the target. Across the beams the intensities
of rays are modulated. The intensity profiles are obtained by
optimization algorithm given in the present Letter.

temperature is zero. Thus a damping scheme should be
applied for cooling the system. The damping is included
by multiplying velocity by a factor l that is less than 1
when yj�t�fj�t� , 0. We found the value of l has no
obvious influence on the optimization results in the present
paper while the influence can be observed if the volume
constraint [14] is taken into account. We will discuss the
problem elsewhere.

As a test of the present algorithm, we did the intensity
optimization for an artificial sample shown in Fig. 1. The
simulated phantom is a cylinder of radius of 15 cm. Lo-
cated at the center of the phantom is a simulated tumor that
is a half cylinder of radius of 4 cm. Close to the tumor is
a simulated organ at risk (OAR) of 2 cm in radius. Nine
coplanar beams of energy of 10 MeV are applied at equi-
spaced entry angles. Because a discussion of the model for
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FIG. 2. Variation of objective function versus the time steps for
example in Fig. 1. The arrow points to where the non-negative
constraints reflect the atoms.
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FIG. 3. Dose-volume histograms for the example in Fig. 1.
Solid line: the tumor. Dotted line: the OAR. Dashed line: the
normal tissue. Obviously, the whole tumor has a dose level
above 80%. 95% volume of the tumor has a dose level above
90%. The dose level of OAR is well below 40%.

dose calculations is beyond the topic of the present Letter,
the dose distribution of each ray is calculated by the ex-
ponential attenuation model of the primary beam without
accounting for the scattering of photons in the phantom.
Without considering any biological effects, we assign sim-
ply a prescription dose of 1 unit to the target and a pre-
scription dose of 0 unit to OAR and normal tissues. The
optimization starts at an initial intensity profile given by
Eq. (6) and the mass of atoms is given by Eq. (5). Figure 2
shows the evolution of the objective function by time steps.
The arrow points to where the non-negative constraints re-
flect the atoms. This is a feature not observed in usual
gradient methods. Figures 3 and 4 show the Dose-Volume
histogram and isodose curves, respectively. Obviously, the
80% isodose curve totally encloses the target very well
while the dose in OAR is below the 40% level. In clinical
applications, the computational efficiency is an important
factor. In this example, the number of voxels is 53 715
and the number of rays is 1323. The calculation time was

FIG. 4. Isodose curve for the example in Fig. 1. The 80%
isodose curve completely encloses the tumor while the OAR is
protected very well.
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35 s on a PC Pentium III 500 mHz processor. Our other
calculations with more voxels and rays included also show
high computational efficiency. More complete results will
be reported elsewhere.

In summary, we have presented a molecular dynamics
viewpoint on the optimization problems in intensity modu-
lated radiation therapy. By this viewpoint, the intensity
optimization in IMRT can be considered to be equivalent
to finding the equilibrium states of a cluster. Our testing
examples show this idea is very useful in solving clinical
problems. Another point we should emphasize is that the
idea in the present Letter may not be limited to the applica-
tion in radiotherapy, it presents a probable alternative way
to solving optimization problems occurring in other fields.
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