
VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001

167904-1
Entanglement Criteria for All Bipartite Gaussian States
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We provide a necessary and sufficient condition for separability of Gaussian states of bipartite systems
of arbitrarily many modes. The condition provides an operational criterion since it can be checked by
simple computation. Moreover, it allows us to find a pure product-state decomposition of any given sepa-
rable Gaussian state. We also show that all bipartite Gaussian states with nonpositive partial transpose
are distillable.
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Entanglement is the basic ingredient in the philosophi-
cal implications of quantum theory. It also plays a cru-
cial role in some fundamental issues of this theory, such
as decoherence or the measurement process. Furthermore,
it is the basis of most applications in the field of quantum
information. However, in spite of their importance, the en-
tanglement properties of systems are far from being under-
stood. In particular, we do not even know how to answer
the following question [1]: given two systems A and B in a
state described by a density operator r, are those systems
entangled? This question constitutes the so-called separa-
bility problem, and it represents one of the most important
theoretical challenges of the emerging theory of quantum
information.

During the last few years a significant amount of work
in the field of quantum information has been devoted to
the separability problem [2]. Until now, the basic tool to
study this problem is a linear map called partial transpo-
sition. Introduced in this context by Peres [3], it provides
us with a necessary condition for a density operator to be
separable. This condition turns out to be also sufficient in
two cases: (a) A and B are two qubits or one qubit and one
qutrit [4]; (b) A and B are two modes (continuous variable
systems) in a Gaussian state [5]. Thus, in these cases the
separability problem is fully solved. However, for higher
dimensional systems as well as in the case in which A and
B consist of several modes in a joint Gaussian state, par-
tial transposition alone does not provide a general criterion
for separability. In both cases, examples of states which
in spite of being entangled satisfy the partial transposition
criterion have been found [6,7].

In this Letter we solve the separability problem for
Gaussian states of an arbitrary number of modes per
site. Our method does not rely in any sense on partial
transposition, and therefore is entirely different from the
ones that have been introduced so far to study this prob-
lem [2]. It is based on a nonlinear map f: gN ! gN11
between matrices gN which reveals whether a state r is
an entangled state or not. In addition, we show that if r

is entangled and has nonpositive partial transpose then it
is distillable [2,8].
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Let us start by fixing the notation and recalling some
properties of correlation matrices (CMs). A Gaussian
state of n modes is completely characterized by a matrix
g [ M2n,2n (the set of 2n 3 2n matrices), called corre-
lation matrix [9], whose elements are directly measurable
quantities. A matrix g [ M2n,2n is a CM if it is real, sym-
metric, and g 2 iJn $ 0. Here we use [10]

Jn � ©
n
k�1J1, J1 �

µ
0 21
1 0

∂
. (1)

In the following we will consider two systems A and B,
composed of n and m modes, respectively, in a Gaussian
state. The corresponding CM will be written as

g0 �

µ
A0 C0
CT

0 B0

∂
$ iJn,m (2)

where A0 [ M2n,2n and B0 [ M2m,2m are CM themselves,
C0 [ M2n,2m and Jn,m � Jn © Jm. In order to simplify
the notation, when it is clear from the context we will
not write the subscripts to the matrices J and we will
not specify the dimensions of the matrices involved in our
derivations. In [7] it was shown that a CM of the form
(2) is separable (i.e., it corresponds to a separable state) iff
there exist two CMs gA,B, such that

g0 $ gA © gB . (3)

This condition, even though it can be very useful to show
that some particular states are entangled [7,11], cannot be
directly used in practice to determine whether an arbitrary
state is entangled or not, since there is no way of determin-
ing gA,B in general. If one can determine them, however,
then one can automatically construct an explicit decompo-
sition of the corresponding density operator as a convex
combination of product states [7].

Below we present a criterion which allows one to deter-
mine whether a given CM, g0, is separable or not. To this
aim, we define a sequence of matrices �gN �`

N�0 of the form
(2). The matrix gN11 is determined by a discrete map de-
fined as follows: (i) if gN is not a CM then gN11 � 0;
© 2001 The American Physical Society 167904-1



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
(ii) if gN is a CM then

AN11 � BN11 � AN 2 Re�XN � , (4a)

CN11 � 2Im�XN � , (4b)

where XN � CN �BN 2 iJ�21CT
N [12]. Note that for N $

1 we have that AN � AT
N � BN and CN � 2CT

N are real
matrices. The importance of this sequence is that g0 is
separable iff gN is a valid separable CM, and, after some
finite number of iterations, gN acquires a form in which
separability is simple to check. Moreover, starting from
that CM we are able to construct the CMs gA,B of Eq. (3)
for the original g0. Now we state several propositions from
which the above results follow. For two technical lemmas,
see the Appendix.

First we show that if gN is separable, so is gN11. More-
over, the CMs gA,B associated to gN [cf. Eq. (3)] allow us
to construct the corresponding CMs for gN11.

Proposition 1: If for some CMs gA,B, we have gN $

gA © gB then gN11 $ gA © gA.
Proof: We use the equivalence (i)–(iii) of Lemma 1 to

obtain that BN 2 CT
N �AN 2 gA�21CN $ gB $ iJ, where

the last inequality follows from the fact that gB is a CM.
Using the equivalence (ii)–(iii) of Lemma 1 we obtain
gA # AN 2 CN �BN 2 iJ�21CT

N � AN11 1 iCN11,
where we have also used the map (4). According to
Lemma 2, this immediately proves the proposition. �

Now, we show that the converse of Proposition 1 is true.
That is, if gN11 is separable, so is gN . Apart from that,
the following proposition exhibits how to construct the
matrices gA,B [cf. Eq. (3)] related to gN starting from the
ones corresponding to gN11.

Proposition 2: If for some CM gA we have gN11 $

gA © gA then gN $ gA © gB for the CM

gB � BN 2 CT
N �AN 2 gA�21CN . (5)

Proof: We use Lemma 2 and the map (4) to transform
the inequality gN11 $ gA © gA into AN 2 CN �BN 2

iJ�21CT
N $ gA. According to the equivalence (ii)–(iii) of

Lemma 1 this implies that gB $ iJ. Since it is clear from
its definition (5), gB is also real and symmetric, it is a
CM. On the other hand, using the equivalence (i)–(iii) of
Lemma 1 we immediately obtain that gN $ gA © gB. �

Using the fact that for N $ 1, AN � BN and the sym-
metry of the corresponding matrix gN we have

Corollary 1: Under the conditions of Proposition 2, we
have gN $ g̃A © g̃A, and g̃A � �gA 1 gB��2 $ iJ is
a CM.

The above propositions imply that g0 is separable iff
gN is separable for all N . 0. Thus, if we find some gN

fulfilling (3) then g0 is separable. Thus, we can establish
now the main result of this work.

Theorem 1 (separability criterion):
(1) If for some N $ 1 we have AN ‡ iJ then g0 is not

separable.
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(2) If for some N $ 1 we have

LN � AN 2 kCNkop' $ iJ (6)

then g0 is separable [13].
Proof: (1) It follows directly from Proposition 1;

(2) We will show that gN $ LN © LN , so that according
to Proposition 2 g0 is separable. We have

gN � LN © LN 1

µ
kCNkop' CN

CT
N kCNkop'

∂
, (7)

so that we just have to prove that the last matrix is posi-
tive. But using Lemma 1 this is equivalent to kCNk

2
op' $

CT
NCN , which is always the case. �
This theorem tells us how to proceed in order to deter-

mine if a CM is separable or not. We just have to iterate
the map (4) until we find that either AN is no longer a CM
or LN is a CM. In the first case, we have that g0 is not
separable, whereas in the second one it is separable. If we
wish to find a decomposition of the corresponding density
operator as a convex sum of product vectors we simply use
the construction given in Corollary 1 until N � 1 and then
the one of Proposition 2. This will give us the CMs gA,B,
such that g0 $ gA © gB, from which the decomposition
can be easily found [7].

In order to check how fast our method converges we
have taken families of CMs and applied to them our cri-
terion. We find that typically with less than five iterations
we are able to decide whether a given CM is entangled
or not. The most demanding states for the criterion are
those which lie very close to the border of the set of sepa-
rable states (see Proposition 3 below). We challenged
the criterion by applying it to states close to this bor-
der and still the convergence was very fast (always below
30 steps). Figure 1 illustrates this behavior. We have taken
n � m � 2 modes, an entangled CM ga of the GHZ form
[14] (Fig. 1a) and an entangled CM gb with positive par-
tial transpose [7] (Fig. 1b). We produced two families of
CMs as ga,b�e� � ga,b 1 e'. We have determined ea,b
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-log(| - |/ε ε εB B)-log(| - |/ε ε εA A)

(a) (b)

FIG. 1. Number of steps as a function e for CMs of the
form ga,b�e� � ga,b 1 e' where: (a) ga taken from Eq. (1) in
Ref. [14] with r � 1�4, and ea � 0.305 774 915 510�1�; (b) gb
taken from Eq. (9) in Ref. [7] and eb � 0.097 866 790 222 8�4�.
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such that ga,b�e� become separable. In Fig. 1 we see that
in both cases, as we approach ea,b exponentially fast, the
number of needed steps increases linearly. The same be-
havior is found using instead of ' other positive projectors
with different ranks and for different initial CMs. Even
though we have tested numerically the rapid convergence
of our method, we still have to prove that, except for a zero
measure set, it can decide whether a CM is entangled or not
after a finite number of steps [15]. We start by considering
the set of separable states, defined by g0 $ gA © gB with
gA,B $ iJ. If we just consider those with gA . iJ, we
will omit a zero measure set. But then we can show that
after a finite number of steps these separable states will be
detected by our procedure.

Proposition 3: If g0 $ gA © gB with gA $ iJ 1 e',
then there exists some

N , N0 �
1
e

�kA0ktr 2 2n� 1 1 , (8)

for which condition (6) is fulfilled.
Proof: Using Proposition 1 we have that for all N ,

AN 2 iJ $ e' . (9)

Thus, 0 # Re�XN � � AN 2 AN11. Since all the matri-
ces in this expression are positive, taking the trace norm
we have kANktr 2 kAN11ktr � kRe�XN �ktr. Adding both
sides of this equation from N � 0 to N0, taking into
account that k · · · ktr $ k · · · kop, and kRe�XN�kop $

kCN11kop [since Re�XN � $ 6i Im�XN �], we have
N021X
N�0

kCN11kop # kA0ktr 2 kAN0ktr # kA0ktr 2 2n ,

where the last inequality is a consequence of the fact that
AN $ iJ for all N . Thus, among �CN �N0

N�1 there must
be at least one for which kCNkop # e. Thus, AN 2
kCNkop' $ AN 2 e' $ 0 where for the last inequality
we have used Eq. (9), and therefore, for that particular
value of N , condition (6) must be fulfilled. �

It is worth stressing that from the proof of Proposi-
tion 3 it follows directly that if g0 is separable, then the
sequence gN converges to a fixed point g` � A` © B`,
where A` � B` $ iJ are CMs. For the sake of com-
pleteness, we now show that if g0 is inseparable, then
we can always detect it in a finite number of steps. We
will use the fact that the CMs of inseparable Gaussian
states form an open set, a fact that follows directly from
condition (3). Therefore, if g0 is inseparable, there al-
ways exist e0 . 0 such that if e , e0 then g0 1 e' is
still inseparable and thus condition (6) is never fulfilled.
However, if g0 were separable, then, according to Proposi-
tion 3, g0 1 e' should fulfill that condition before reach-
ing N � N0. This can be summarized as follows.

Corollary 2: If g is inseparable then there exists some
e . 0 such that starting out from g0 � g 1 e',
condition (6) is not fulfilled for any N # N0 �
�kA0ktr 2 2n��e.
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Together, Proposition 3 and Corollary 2 show that —
whether g0 is separable or not, and except for a set of
measure zero —we will be able to detect it in a finite num-
ber of steps. However, as mentioned above, according to
our numerical calculations we see that the process always
converges very fast and in practice one can directly use the
method sketched after Theorem 1.

To conclude this Letter, we show that not only separa-
bility but also distillability [2,8], can be determined for all
Gaussian states. The proof is based on the result that for
1 3 1 Gaussian states nonpositive partial transpose (npt)
implies distillability [16]. This result can be extended to
all bipartite Gaussian states, i.e., a Gaussian density matrix
r is distillable iff its partial transpose is not positive. For
the proof, it suffices to show that any n 3 m npt Gaussian
state can be locally transformed into an 1 3 1 npt Gaussian
state. This is achieved as follows: For Gaussian states, the
npt condition is equivalent to g ‡ iJ̃ [7]. Hence, for every
npt CM g there exists a vector z � zA © zB [ �2�n1m�

such that for some e . 0 we have

zy�g 2 iJ̃�z # 2e , 0 . (10)

It is always possible to pick z such that �Rezx�T J Imzx fi

0 for both x � A, B. But then there exist symplectic maps
SA, SB such that Sx maps span�Rezx , Imzx� to span�e1, e2�
[17]. It follows that ẑx � S21

x zx have nonzero entries only
in the first two components. Thus not only is ẑy��SA ©

SB�T g�SA © SB� 2 iJ̃�ẑ , 0 but by construction this still
holds for the CM of the reduced state obtained by discard-
ing all but the first mode at each side. Discarding subsys-
tems is a local operation, hence all npt Gaussian states can
be transformed locally into an npt 1 3 1 state and are thus
distillable by [16]. �

To summarize, we have obtained a necessary and suf-
ficient condition for Gaussian states to be separable. The
condition provides an operational criterion in that it can be
easily checked by direct computation. It is worth mention-
ing that our criterion can be used to study the separability
properties with respect to bipartite splittings of multipartite
systems in Gaussian states [11,18]. Our criterion is based
on a nonlinear map that is more powerful than partial trans-
position. In addition we proved that a bipartite Gaussian
state is distillable if and only if it has nonpositive partial
transpose. While in general, i.e., for non-Gaussian states,
both the separability and the distillability problems remain
open, these results represent a significant step towards un-
derstanding the separability problem, which is one of the
most challenging problems in the field of quantum infor-
mation. With the results presented here, one can decide for
any bipartite Gaussian state by direct computation whether
it is distillable and/or inseparable: it is distillable iff it is
npt, and it is separable iff gN $ iJ ; N .
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Appendix.— In this Appendix we present the lemmas
which are needed in order to prove Propositions 1 and 2.
Let us consider three real matrices 0 # A � AT [ Mn,n,
0 # B � BT [ Mm,m, C [ Mn,m, and

M �

µ
A C

CT B

∂
� MT [ Mn1m,n1m . (11)

Lemma 1: The following statements are equivalent:
(i) M $ 0.
(ii) ker�B� # ker�C� and A 2 CB21CT $ 0.
(iii) ker�A� # ker�CT � and B 2 CTA21C $ 0 [12].
Proof: We will just prove the first equivalence since the

other one is analogous. We use that M $ 0 iff for any two
real vectors a [ 4n and b [ 4m

aTAa 1 bT Bb 1 aT Cb 1 bT CTa $ 0 . (12)

Conversely, A 2 CB21CT $ 0 iff for any a [ 4n we
have

aT Aa 2 aTCB21CT a $ 0 . (13)

�i� ) �ii�: We assume (12). First, ker�B� # ker�C� since
otherwise we could always choose a b [ ker�B� so that
22aT Cb . aTAa. Second, if we choose b � 2B21CT a
then we obtain (13). �ii� ) �i�: We now assume (13).
Then, A � CB21CT 1 P, where P $ 0. Defining ã �
B21CT a, we have that CT a � Bã [since ker�B� #
ker�C�], and thus the left-hand side of (12) can be
expressed as aTPa 1 �ã 1 b�T B�ã 1 b�, which is
positive. �

In the derivations of Propositions 1 and 2 we have not
included explicitly the conditions imposed by the present
lemma on the kernels of B and C. However, one can
easily verify that all the problems that may arise from these
kernels are eliminated by using pseudoinverses [12] instead
of inverses of matrices.

Let us consider two real matrices A � AT [ Mn,n and
C � 2CT [ Mn,n, and

M �

µ
A C

CT A

∂
� MT [ M2n,2n . (14)

Lemma 2: M $ 0 iff A 1 iC $ 0.
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Proof: This follows from the observation that M is real,
and that for any pair of real vectors a, b [ 4N we have
�a 2 ib�y�A 1 iC� �a 2 ib� � �a © b�TM�a © b�. �

[1] R. Werner, Phys. Rev. A 40, 4277 (1989).
[2] For a review of the problem and its progress see, e.g.,

M. Lewenstein et al., J. Mod. Opt. 47, 2481 (2000);
P. Horodecki et al., J. Quant. Inf. Comp. 1, 45 (2001).

[3] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[4] M. Horodecki et al., Phys. Lett. A 223, 1 (1996).
[5] L.-M. Duan et al., Phys. Rev. Lett. 84, 2722 (2000);

R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[6] P. Horodecki, Phys. Lett. A 232, 333 (1997); C. H. Bennett

et al., Phys. Rev. Lett. 82, 5385 (1999).
[7] R. Werner et al., Phys. Rev. Lett. 86, 3658 (2001).
[8] C. Bennett et al., Phys. Rev. A 54, 3824 (1996);

M. Horodecki et al., Phys. Rev. Lett. 80, 5239 (1998).
[9] If Xk , Pk are position- and momentum-like operators

in each mode with canonical commutator �Xk , Pk� � i,
we define gkl � 2 Re�	�Rk 2 dk � �Rl 2 dl�
�, where
dk � 	Rk
 � tr�rRk� and R2k21 � Xk and R2k � Pk

(k � 1, . . . , n).
[10] For convenience we use direct sum notation for matrices

and vectors. That is, if A [ Mn,n and B [ Mm,m, A ©

B [ Mn1m,n1m is a block diagonal matrix of blocks A
and B. Similarly, if f1 [ 4n and f2 [ 4m are two
vectors, then f1 © f2 [ 4n1m is a vector whose first n
components are given by the entries of f1 and the last m
by those of f2.

[11] G. Giedke et al., e-print quant-ph/01030137 [Phys. Rev. A
(to be published)].

[12] Throughout this work we will denote by B21 the pseudo-
inverse of B, that is, BB21 � B21B is the projector on the
range of B.

[13] kAktr � tr�AyA�1�2 denotes the trace norm of A. The op-
erator norm of A, kAkop is the maximum eigenvalue of
�AyA�1�2.

[14] P. v. Loock et al., Phys. Rev. A 63, 022106 (2001).
[15] Note that the existence of a zero measure set which cannot

be characterized in a finite number of steps is not particular
for our method, but a simple consequence of finite preci-
sion. E.g., if we have a density matrix r for two qubits such
that the partial transpose has a negative eigenvalue 2e, it
will be increasingly difficult to check whether rT $ 0 as
e ! 0.

[16] G. Giedke et al., e-print quant-ph/0007061 [J. Quant. Inf.
Comp. (to be published)].

[17] V. I. Arnold, Mathematical Methods of Classical Mechan-
ics (Springer-Verlag, New York, 1989), 2nd ed.

[18] W. Dür et al., Phys. Rev. Lett. 83, 3562 (1999); Phys.
Rev. A 61, 042314 (2000).
167904-4


