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Classical fingerprinting associates with each string a shorter string (its fingerprint), such that any
two distinct strings can be distinguished with small error by comparing their fingerprints alone. The
fingerprints cannot be made exponentially smaller than the original strings unless the parties preparing the
fingerprints have access to correlated random sources. We show that fingerprints consisting of quantum
information can be made exponentially smaller than the original strings without any correlations or
entanglement between the parties. This implies an exponential quantum/classical gap for the equality
problem in the simultaneous message passing model of communication complexity.
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Fingerprinting can be a useful mechanism for determin-
ing if two strings are the same: each string is associated
with a much shorter fingerprint and comparisons between
strings are made in terms of their fingerprints alone. This
can lead to savings in the communication and storage of
information.

The notion of fingerprinting arises naturally in the set-
ting of communication complexity (see [1] for a survey).
The particular model of communication complexity that
we consider in this Letter is called the simultaneous mes-
sage passing model, which was introduced by Yao [2] in
his original paper on communication complexity. In this
model, two parties —Alice and Bob —receive inputs x and
y, respectively, and are not permitted to communicate with
one another directly. Rather they each send a message to a
third party, called the referee, who determines the output
of the protocol based solely on the messages sent by Alice
and Bob. The collective goal of the three parties is to cause
the protocol to output the correct value of some function
f�x, y� while minimizing the amount of communication
from Alice and Bob to the referee. For the equality prob-
lem, the function is

f�x, y� �

Ω
1, if x � y ,
0, if x fi y . (1)

The problem can, of course, be trivially solved if Alice
sends x and Bob sends y to the referee, who can then
compute f�x,y�. However, the cost of this protocol is
high; if x and y are n-bit strings, then a total of 2n bits are
communicated. If Alice and Bob instead send fingerprints
of x and y, which may each be considerably shorter than x
and y, the cost can be reduced significantly. The question
we are interested in is how much the size of the fingerprints
can be reduced.

If Alice and Bob share a random O��� log2�n����-bit key,
then the fingerprints need only be of constant length if we
allow a small probability of error; a brief sketch of this
follows. A binary error-correcting code is used, which can
0031-9007�01�87(16)�167902(4)$15.00
be represented as a function E: �0, 1�n ! �0, 1�m, where
E�x� is the code word associated with x [ �0, 1�n. There
exist error-correcting codes (Justesen codes, for instance)
with m � cn such that the Hamming distance between any
two distinct code words E�x� and E�y� (i.e., the number
of bit positions where they differ) is at least �1 2 d�m,
where c and d are positive constants. For the particu-
lar case of Justesen codes, we may choose any c . 2
and we will have d , 9�10 1 1��15c� (for sufficiently
large n) [3]. Now, for x [ �0, 1�n and i [ �1, 2, . . . , m�,
let Ei�x� denote the ith bit of E�x�. The shared key is
a random i [ �1, 2, . . . , m� [consisting of log2�n� 1 O�1�
bits]. Alice and Bob, respectively, send the bits Ei�x� and
Ei�y� to the referee, who then outputs 1 if and only if
Ei�x� � Ei�y�. If x � y, then Ei�x� � Ei�y�, so then the
outcome is correct. If x fi y, then the probability that
Ei�x� � Ei�y� is at most d, so the outcome is correct
with probability 1 2 d. The error probability can be re-
duced from d to any ´ . 0 by having Alice and Bob send
O��� log2�1�´���� independent random bits of the code words
E�x� and E�y� to the referee. In this case, the length of
each fingerprint is O��� log2�1�´���� bits.

One disadvantage of the above scheme is that is requires
overhead in creating and maintaining a shared key. More-
over, once the key is distributed, it may be necessary to
store it securely until the inputs are obtained. This is be-
cause, for every fixed key value, there are distinct inputs x
and y on which the protocol gives the incorrect output 1.
Therefore, an adversary who uses the shared key as prior
information can perform the task of fooling the protocol
into incorrectly outputting the value 1.

Yao (Ref. [2] Section 4.D) posed as an open problem
the question of what happens in this model if Alice and
Bob do not have a shared key. Ambainis [4] proved that
fingerprints of O�

p
n � bits suffice if we allow a small er-

ror probability (see also [5–7]). Note that in this setting
Alice and Bob still have access to random bits, but there
are no correlations between each others’ random bits. Sub-
sequently, Newman and Szegedy [7] proved the above is
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optimal in that the length of the fingerprints must scale at
least proportionally to

p
n. Babai and Kimmel [5] later

showed that probabilistic and deterministic communica-
tion complexity can be at most quadratically far apart for
any function in the simultaneous message passing model,
which also implies the

p
n lower bound. Babai and Kim-

mel attribute a simplified proof of this fact to Jean Bourgain
and Avi Wigderson.

We consider the problem where Alice and Bob’s fin-
gerprints can consist of quantum information. Alice and
Bob are still restricted to have no shared key (or entangle-
ment) between them. We show that O��� log2�n����-qubit fin-
gerprints are sufficient to solve the equality problem in this
setting — an exponential improvement over the

p
n-bound

for the comparable classical case. Our method is to set
the 2n fingerprints to quantum states whose pairwise in-
ner products are bounded below 1 in absolute value and
to use a measurement that identifies identical fingerprints
and distinguishes distinct fingerprints with good probabil-
ity. This gives a simultaneous message passing protocol
for equality in the obvious way: Alice and Bob send the
fingerprints of their respective inputs to the referee, who
then performs the measurement that checks if the finger-
prints are equal or distinct.

The fact that quantum systems contain large sets of
nearly orthogonal states —sets of 2n states that are nearly
orthogonal pairwise in O��� log2�n����-qubit systems — is well
known. For example, it is noted in [8], where it is shown
that these nearly orthogonal sets of states cannot be utilized
to solve certain coding problems much more efficiently
than possible with classical information. Our results are
perhaps the first demonstration that nearly orthogonal sets
of quantum states can be used to perform a natural infor-
mation processing task significantly more efficiently than
possible with classical information.

To explicitly construct a large set of nearly orthogonal
quantum states, assume that for fixed c . 1 and 0 , d ,

1 we have an error correcting code E: �0, 1�n ! �0, 1�m for
each n, where m � cn and such that the distance between
distinct code words E�x� and E�y� is at least �1 2 d�m.
For instance, we may use the codes discussed previously
in the classical shared-key protocol. Now, for each x [
�0, 1�n, define the ��� log2�m� 1 1���-qubit state

jhx� �
1

p
m

mX
i�1

ji� jEi�x�� . (2)

Since two distinct code words can be equal in at most dm
positions, for any x fi y we have �hxjhy� # dm�m � d.
Thus we have 2n different ��� log2�n� 1 O�1����-qubit states,
and each pair of them has an inner product with an absolute
value at most d.

The simultaneous message passing protocol for the
equality problem works as follows. When given n-bit
inputs x and y, respectively, Alice and Bob send finger-
prints jhx� and jhy� to the referee. Then the referee must
distinguish between the case where the two states received
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(call them jf� and jc�) are identical or have an inner
product at most d in absolute value. This is accomplished
with one-sided error probability by the procedure that
measures and outputs the first qubit of the state

�H ≠ I� �c-SWAP� �H ≠ I� j0� jf� jc� . (3)

Here H is the Hadamard transform, which maps jb� !
1
p

2
���j0� 1 �21�bj1����, SWAP is the operation jf� jc� !

jc� jf�, and c-SWAP is the controlled-SWAP (controlled
by the first qubit). Figure 1 illustrates this. Tracing
through the execution of this circuit, the final state before
the measurement is

1
2 j0� �jf� jc� 1 jc� jf�� 1

1
2 j1� �jf� jc� 2 jc� jf�� .

(4)

Measuring the first qubit of this state produces outcome 1
with probability �1 2 j�fjc�j2��2. This probability is 0
if x � y and is at least �1 2 d2��2 . 0 if x fi y. Thus,
the test determines which case holds with one-sided error
probability �1 1 d2��2.

The error probability of the test can be reduced to
any ´ . 0 by setting the fingerprint of x [ �0, 1�n to
jhx�≠k for a suitable k [ O��� log2�1�´����. From such
fingerprints, the referee can independently perform the
test in Fig. 1 k times, resulting in an error probability
below ´. In this case, the length of each fingerprint is
O��� log2�n� log2�1�´����. In summary, we have shown the
following.

Theorem 1.—There exists a quantum simultaneous mes-
sage passing protocol for the equality problem with small
error probability and O��� log2�n���� qubits of communication
[contrasting with Q�

p
n � bits classically].

It is worth considering what goes wrong if one tries
to simulate the above quantum protocol using classical
mixtures in place of quantum superpositions. In such a
protocol, Alice and Bob send ���i, Ei�x���� and ��� j, Ej�y����,
respectively, to the referee for independent random uni-
formly distributed i, j [ �1, 2, . . . , m�. If it should happen
that i � j, then the referee can make a statistical infer-
ence about whether or not x � y. But i � j occurs with
probability only O�1�n�, and in the case where i fi j, the
referee will not be able to determine whether x � y with
good probability, as shown by the

p
n lower bound of [7].

The distinguishing test in Fig. 1 can be viewed as a quan-
tum operation that has no analogous classical probabilistic
counterpart.

FIG. 1. Quantum circuit to test if jf� � jc� or j�fjc�j # d.
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Our quantum protocol for equality in the simultane-
ous message model uses O��� log2�n����-qubit fingerprints for
any constant error probability. Is it possible to use fewer
qubits? In fact, without a shared key, logarithmic-length
fingerprints are necessary. This is because any k-qubit
quantum state can be specified within exponential preci-
sion with O�k2k� classical bits. Therefore the existence
of a k-qubit quantum protocol implies the existence of an
O�k2k�-bit (deterministic) classical protocol. From this we
can infer that k $ log2�n� 2 O�log2 ��� log2�n����	.

We next consider some efficiency improvements to our
fingerprinting scheme. It can be shown that the aforemen-
tioned method uses k��� log2�n� 1 O�1���� qubit fingerprints
to attain an error probability slightly more than �9�10�k .
First we note that the construction of nearly orthogonal
states can be improved by using a better error-correcting
code. Using a probabilistic argument (see, e.g., [9]), it
can be shown that, for an arbitrarily small d . 0, there
exists an error-correcting code E: �0, 1�n ! �0, 1�m with
m # n�dc (for some constant c) such that the Hamming
distance between any two distinct code words E�x� and
E�y� is between �1 2 d�m�2 and �1 1 d�m�2. If a set S
of 2n m-bit strings is chosen at random, then the probability
that there is a pair of strings in S whose Hamming distance
deviates from m�2 by more than dm is less than 1. This
shows that there exists a set S with the right properties.
Note that this existence proof does not yield an explicit
construction of the code; however, Guruswami and Smith
[10] recently pointed out to us that explicit constructions of
such codes can be obtained from results in [11,12]. Given
such a code, the log2�m�-qubit fingerprint of x [ �0, 1�n

can be set to

jhx� �
1

p
m

mX
i�1

�21�Ei �x�ji� (5)

to yield the following theorem.
Theorem 2.—For every n and d . 0 one can con-

struct a set �jhx�: x [ �0, 1�n� of states of log2�n� 1

O��� log2�1�d���� qubits, such that j�hxjhy�j # d whenever
x fi y.

The above construction yields fingerprints that are arbi-
trarily close to orthogonal — their pairwise inner products
are within any d . 0 of 0. This results in a distin-
guishing measurement (Fig. 1) that errs with probability
�1 1 d2��2— slightly more than 1�2. To reduce the er-
ror probability to an arbitrarily small ´ . 0, recall that the
method we proposed is to construct k copies of each finger-
print, which can then be measured in pairs independently.
The result is an error probability of ����1 1 d2��2���k , which
is approximately 1�2k when d is small. We now show
that an alternate measurement results in an error probabil-
ity close to

p
pk ����1 1 d��2���2k, which is approximatelyp

pk �4k when d is small. This is a near-quadratic re-
duction in the error probability resulting from a k-copy
fingerprint consisting of k��� log2�n� 1 O�1���� qubits.
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The improved measurement works as follows. Let
R1, . . . , R2k be registers that initially contain jf�, . . . , jf�,
jc�, . . . , jc� (k copies of each). Let s � �2k�! and
s0, s1, . . . , ss21 be an enumeration of all the permuta-
tions on 2k items, where s0 is the identity permutation.
Let P be an s-dimensional register initialized to j0�. Let
F be any transformation satisfying

F: j0� �
1
p

s

s21X
i�0

ji� , (6)

such as the s-dimensional quantum Fourier transform.
Since s is a smooth number [i.e., its prime factors are all
O��� log2�s����], the construction in [13] implies that F can
be computed exactly with a polynomial number of basic
operations. The distinguishing procedure is as follows:
(1) Apply F to register P. (2) Apply permutation si to
registers R1, . . . , R2k , conditioned on the value of P being
ji�. (3) Apply Fy to P and measure the final state. If P
contains 0, then answer equal, otherwise not equal. This
procedure corresponds to a projection onto the symmetric
subspace for registers R1, . . . , R2k , as explained in [14].
The state after step 2 is

1
p

s

s21X
i�0

ji�si�jf� · · · jf� jc� · · · jc�� , (7)

where si�jf� · · · jf� jc� · · · jc�� means we permute the
contents of the 2k registers according to si.

Case 1: jf� � jc�. In this case the permutation of the
registers does absolutely nothing, so the procedure answers
equal with certainty.

Case 2: j�fjc�j , d. The probability of answering
equal is the squared norm of the vector obtained by ap-
plying the projection j0� �0j ≠ I to the final state:á

1
p

s

s21X
i�0

�0jFyji�si �jf� · · · jf� jc� · · · jc��

á2

(8)

�

á
1
s

s21X
i�0

si�jf� · · · jf� jc� · · · jc��

á2

(9)

�
�k!�2

�2k�!

kX
j�0

µ
k
j

∂2

d2j (10)

#
�k!�2

�2k�!
�1 1 d�2k 


p
pk

µ
1 1 d

2

∂2k

. (11)

In summary, we have shown the following.
Theorem 3.—The above procedure, on input jf�≠k and

jc�≠k such that either jf� � jc� or j�fjc�j # d, decides
which of the two is the case with error O���

p
k � 11d

2 �2k���.
The above procedure can be viewed as a solution to a

more general state distinguishing problem defined as fol-
lows. The input is k copies of each of two quantum states
jf� and jc� that are arbitrary subject to the condition
that the two states are either identical or have inner
product bounded in absolute value by some given d , 1.
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The goal is to distinguish between the two cases with
as high probability as possible. The above procedure
solves the state distinguishing problem with error prob-
ability

p
pk ��1 1 d��2	2k , and it can be shown that, in

general, the error probability cannot be less than �1�4�
��1 1 d��2	2k. The idea behind this lower bound is to
consider the pairs of states jf1� � jc1� � j0� and jf2� �
cos�u�2� j0� 1 sin�u�2� j1� and jc2� � cos�u�2� j0� 2

sin�u�2� j1�, where u � cos21�d�. Clearly, jf1� � jc1�
and �f2jc2� � d. A state distinguishing procedure must
distinguish between ja� � jf1�≠k ≠ jc1�≠k and jb� �
jf2�≠k ≠ jc2�≠k . Since �f1jf2� � �c1jc2� � cos�u�2�,
it follows that �ajb� � cos2k�u�2� � ��1 1 cosu��2	k �
��1 1 d��2	k. It is known that the optimal procedure
distinguishing between two states with inner product
cosa has error probability �1 2 sina��2 $ �1�4� cos2 a
[15]. Therefore any state distinguisher has error proba-
bility at least �1�4� ��1 1 d��2	2k. Note that this lower
bound for state distinguishing concerns a problem that is
more general than the problem of distinguishing between
fingerprints, because, in the case of fingerprints, the states
are from a known set of only 2n possibilities.

Finally, returning to the fingerprinting scenario, we con-
sider the case where Alice and Bob have a shared quan-
tum key, consisting of O��� log2�n���� Bell states, but are
required to output classical strings as fingerprints. Is there
any sense in which a quantum key can result in improved
performance over the case of a classical key? We observe
that results in [16] imply an improvement in the particu-
lar setting where the fingerprinting scheme must be exact
(i.e., the error probability is 0) and where there is a re-
striction on the inputs that either x � y or the Hamming
distance between x and y is n�2. Under this restriction,
any classical scheme with a shared key would still require
fingerprints of length linear in n. On the other hand, there
is a scheme with a shared quantum key of O��� log2�n���� Bell
states that requires fingerprints of length only O��� log2�n����
bits. See [16] (whose results are partly based on results
in [17,18]) for details. It should be noted that if the exact-
ness condition is relaxed to one where the error probability
must be O�1�nc� (for a constant c) then there also exists
a classical scheme with classical keys and fingerprints of
length O��� log2�n����.
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