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A single quantum system, such as a hydrogen atom, can transmit a Cartesian coordinate frame (three
axes). For this it has to be prepared in a superposition of states belonging to different irreducible repre-
sentations of the rotation group. The algorithm for decoding such a state is presented, and the fidelity
of transmission is evaluated.
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There has recently been considerable progress in de-
vising ways to indicate a spatial direction by means of
quantum particles. This type of information cannot be
represented by a sequence of symbols like 0 and 1, unless
the emitter (Alice) and the receiver (Bob) have prearranged
a common coordinate system for specifying the numerical
values of relevant angles. Physical objects have to be sent.
Preceding works [1–4] have considered the use of spins
for transmitting a single direction. The simplest method
[1] is to send these spins polarized along the direction that
one wishes to indicate. This, however, is not the most effi-
cient procedure: when two spins are transmitted, a higher
accuracy is achieved by preparing them with opposite po-
larizations [2]. If there are more than two spins, optimal
results are obtained with entangled states [3,4].

This Letter presents a method for the transmission of a
complete Cartesian frame. If many spins are available, a
simple possibility would be for Alice to use half of them
for indicating her x axis and the other half for her y axis.
However, the two directions found by Bob may not then be
exactly perpendicular, because separate transmissions have
independent errors due to limited angular resolution. Some
adjustment will be needed to obtain Bob’s best estimates
for the x and y axes, before he can infer from them his
guess of Alice’s z direction. This method is not optimal,
and it is obviously not possible to proceed in this way if a
single quantum messenger is available. Here we shall show
how a single hydrogen atom (formally, a spinless particle
in a Coulomb potential) can transmit a complete frame [5].

Consider the nth energy level of that atom (a Rydberg
state). Its degeneracy is d � n2 because the total angu-
lar momentum may take values j � 0, . . . ,n 2 1, and for
each one of them m � 2j, . . . , j. Alice indicates her xyz
axes by sending the atom in a state

jA� �
n21X
j�0

jX
m�2j

ajmj j, m� , (1)

with normalized coefficients ajm that will be specified be-
low. Bob then performs a covariant measurement [6] in
order to evaluate the Euler angles cuf that would ro-
tate his own xyz axes into a position parallel to Alice’s
axes. Bob’s detectors (ideally, there is an infinite number
of them [7]) have labels cuf and the mathematical rep-
resentation of his apparatus is a positive operator valued
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measure (POVM) [8,9], namely a resolution of identity by
a set of positive operators:Z

dcufE �cuf� � 1 , (2)

where dcuf � sinudcdudf�8p2 is the SO(3) Haar mea-
sure for Euler angles [10], and E�cuf� � jcuf� �cufj.
The vectors jcuf� will be specified below. The probabil-
ity that the detector labeled cuf is excited is given by

P�cuf� � �AjdcufE�cuf� jA� � dcufj�A jcuf�j2.
(3)

Our task is to construct vectors jcuf� such that Eq. (2)
is satisfied (that is, the probabilities sum up to one) and
Bob’s expected error is minimal.

Following the method of Ref. [4], we define a fiducial
vector for Bob,

jB� �
n21X
j�0

p
2j 1 1

jX
m�2j

bjmj j, m� , (4)

where the coefficients bjm are normalized for each j sepa-
rately:

jX
m�2j

jbjmj
2 � 1 ; j . (5)

In Ref. [4] a single value of m was used; here we need
all the values. Note that Eq. (1) was written with Alice’s
notations (m is the angular momentum along her z axis),
while Eq. (4) is written with Bob’s notations (m refers to
his z axis). This issue will be dealt with later.

We now define

jcuf� � U�cuf� jB� , (6)

where U�cuf� is the unitary operator for a rotation
by Euler angles cuf. Note that since jB� is a direct
sum of vectors, one for each value of j, then likewise
U�cuf� is a direct sum with one term for each irreducible
representation,

U�cuf� �
X
j

©D � j��cuf� , (7)

where the D � j��cuf� are the usual irreducible unitary
rotation matrices [10]. To prove that Eq. (2) is satisfied,
we note that its left-hand side is invariant if multiplied
by U�mnr� on the left and U�mnr�y on the right, for
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any arbitrary Euler angles mnr (because these unitary
matrices represent group elements and therefore have the
group multiplication properties) [11]. It then follows from
a generalization of Schur’s lemma [12] that the left-hand
side of (2) is a direct sum of unit matrices, owing to the
presence of the factor �2j 1 1� which is the dimensionality
of the corresponding irreducible representation. Therefore
Eq. (2) is satisfied.

The detection probability (3) can thus be written as
P�cuf� � dcufj�AjU�cuf�jB�j2. To compute this ex-
pression explicitly, we must use a uniform system of no-
tations for jA� and jB�— recall that Eq. (1) was written in
Alice’s basis, and Eq. (4) in Bob’s basis. It is easier to
rewrite Alice’s vector jA� in Bob’s language. For this we
have to introduce the Euler angles jhz that rotate Bob’s
xyz axes into Alice’s axes (that is, jhz are the true, but
unknown values of the angles cuf sought by Bob). The
unitary matrix U�jhz� represents an active transformation
of Bob’s vectors into Alice’s. Therefore, U�jhz �y is the
passive transformation (p. 216 in Ref. [8]) from Bob’s no-
tations to those of Alice, and U�jhz � is the corresponding
transformation from Alice’s notations to Bob’s. Written in
Bob’s notations, Alice’s vector jA� becomes U�jhz � jA�
so that, in Eq. (3), �Aj becomes �AjU�jhz �y. Let us there-
fore define

U�abg� � U�jhz �yU�cuf� . (8)

The Euler angles abg have the effect of rotating Bob’s
Cartesian frame into his estimate of Alice’s frame, and
then rotating back the result by the true rotation from
Alice’s to Bob’s frame. That is, the angles abg indi-
cate Bob’s measurement error, and the probability of that
error is

P�abg� � dabgj�AjU�abg�jB�j2, (9)

where dabg � sinbdadbdg�8p2. Note that in the
above equation jA� is written with Alice’s notations as in
(1), and jB� with Bob’s notations as in (4).

Of course, Bob cannot know the values of abg. His
measurement yields only some value for cuf. The fol-
lowing calculation that employs abg has the sole purpose
of estimating the expected accuracy of the transmission
(which does not depend on the result cuf).

We must now choose a suitable quantitative criterion for
that accuracy. When a single direction is considered, it is
convenient to define the error [13] as sin�v�2�, where v is
the angle between the true direction and the one estimated
by Bob. The mean square error is

�sin2�v�2�� � �1 2 �cosv���2 � 1 2 F , (10)

where F is usually called the fidelity [4]. When we con-
sider a Cartesian frame, we likewise define fidelities for
each axis. Note that cosvk (for the kth axis) is given by the
corresponding diagonal element of the orthogonal (classi-
167901-2
cal) rotation matrix. Explicitly, we have [14]

cosvz � cosb , (11)

and

cosvx 1 cosvy � �1 1 cosb� cos�a 1 g� , (12)

whence, by Euler’s theorem,

cosvx 1 cosvy 1 cosvz � 1 1 2 cosV , (13)

where V has a simple physical meaning: it is the angle for
carrying one frame into the other by a single rotation.

The expectation values of the above expressions are ob-
tained with the help of Eq. (9):

� f�abg�� �
Z

dabgj�AjU�abg�jB�j2f�abg� , (14)

where, explicitly,

�AjU�abg�jB� �
X

j,m,r

a�
jmbjr� j, mjD � j��abg� j j, r� .

(15)

The unitary irreducible rotation matrices D � j��abg� have
components [10]

� j, mjD � j��abg� j j, r� � ei�ma1rg�d� j�
mr �b� , (16)

where the d� j�
mr �b� can be expressed in terms of Jacobi

polynomials. Collecting all these terms, we finally obtain,
after many tedious analytical integrations over products of
Jacobi polynomials [15],

� f�abg�� �
X

fjkmnrsa
�
jmbjraknb�

ks , (17)

where the numerical coefficients fjkmnrs depend on our
choice of f�abg� in Eqs. (11)–(13). The problem is to
optimize the components ajm (normalized to 1), and bjm

satisfying the constraints (5), so as to maximize the above
expression. For further use, it is convenient to define a
matrix

Mjm,kn �
X
r,s

fjkmnrsbjrb�
ks , (18)

so that

� f�abg�� �
X

Mjm,kna�
jmakn � �AjMjA� . (19)

First consider a simple case: to transfer only the z
axis, we wish to maximize �cosb�. An explicit calcula-
tion yields

fjkmnrs � dmndrsgjk . (20)

The matrix gjk which is defined by the above equation has
nonvanishing elements

gjj � ns�� j� j 1 1�� , (21)
167901-2
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and

gj,j21 � gj21,j �
1
j

s
� j2 2 n2� � j2 2 s2�

4j2 2 1
. (22)

The dmn term in (20) implies that, for any choice of Bob’s
fiducial vector jB�, the matrix M in (19) is block diagonal,
with one block for each value of m. The optimization
of Alice’s signal results from the highest eigenvalue of
that matrix. This is the highest eigenvalue of one of the
blocks, so that a single value of m is actually needed.
A similar (slightly more complicated) argument applies
if Alice’s vector is given and we optimize Bob’s fiducial
vector. This result proves the correctness of the intuitive
167901-3
assumption that was made in [3,4] where a single value
of m was used. It was then found that when m � 0 (the
optimal value) the expected error asymptotically behaves
as 1.446�d, where d is the effective number of Hilbert
space dimensions. In the present case, d � � jmax 1 1�2,
which is the degeneracy of the nth energy level.

If we want to transfer two axes, we use Eq. (12) and cal-
culate the matrix elements for ��1 1 cosb� cos�a 1 g��.
(It is curious that they are simpler than those for �cos�a 1

g�� alone.) We obtain

fjkmnrs � dm,n21dr,s21hjk 1 dn,m21ds,r21hkj , (23)

where the nonvanishing elements of hjk are
hjj �
�� j 2 n 1 1� � j 1 n� � j 2 s 1 1� � j 1 s��1�2

2j� j 1 1�
, (24)

hj,j21 �
�� j 2 n 1 1� � j 2 n� � j 2 s 1 1� � j 2 s��1�2

2j�4j2 2 1�1�2 , (25)

hj21,j �
�� j 1 n 2 1� � j 1 n� � j 1 s 2 1� � j 1 s��1�2

2j�4j2 2 1�1�2 . (26)
Note that the hjk matrix, whose elements depend on n
and s, is not symmetric (while gjk was). This is because
it comes from the operator ei�a1g� which is not Hermi-
tian. However, the two terms of (23) together, which cor-
responds to cos�a 1 g�, have all the symmetries required
by the other terms a�

jmbjraknb�
ks in Eq. (17). Finally, if we

wish to optimize directly the three Cartesian axes (with-
out losing accuracy by inferring z from the approximate
knowledge of x and y) we use all the terms of (13), that
is, both those of (20) and of (23).

It now remains to find the vectors jA� and jB� that mini-
mize the transmission error. For small values of j, we used
Powell’s method [16] without imposing any restrictions
on jA� and jB� other than their normalization conditions.
As intuitively expected, we found that the optimal vectors
satisfy

bjm � ajm

√X
n

jajnj
2

!21�2

, ; j . (27)

This means that Bob’s vector should look as much as pos-
sible like Alice’s signal, subject to the restrictions imposed
by the constraint (5).

Taking this property for granted is the key to a more ef-
ficient optimization method, as follows: assume any bjm,
so that the bilinear form (18) is known. Find its highest
eigenvalue and the corresponding eigenvector ajm. From
the latter, get new components bjm by means of (27),
and repeat the process until it converges (actually, a few
iterations are enough). The results are shown in Fig. 1. It
is seen that there is little advantage in optimizing only two
axes, if for any reason the third axis is deemed less impor-
tant. If the three axes are simultaneously optimized, it can
be shown [17] that the mean square error tends asymptoti-
cally to 1�

p
d.

It is not surprising that this result is weaker than the one
for a single axis, which was 1.446�d. The obvious reason
is that we are now transmitting a three-dimensional rotation
operation that can be applied to any number of directions,
not only to three orthogonal axes. Indeed, consider any
set of unit vectors e

m
m, where m � 1, 2, 3, and m is a label
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FIG. 1. Mean square error (per axis) for the transmission of
the directions of one, two, or three axes, by a single quantum
carrier. (This figure was drawn with a log-log scale.)
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for identifying the vectors. Let wm be a positive weight
factor attached to each vector, indicating its importance.
Let R�abg� be the classical orthogonal rotation matrix
[14] for Euler angles abg. Then the cosine of the angle
between Bob’s estimate of e

m
m and the true direction of that

vector is

cosvm �
X
m,n

Rmn�abg�em
mem

n . (28)

With the same notations as before, we have

� f�abg�� �
X
m

wm�cosvm� �
X
m,n

�Rmn�abg��Cmn ,

(29)

where

Cmn �
X
m

wmem
mem

n . (30)

This is a positive matrix which depends only on the geome-
try of the set of vectors whose transmission is requested.
We can now diagonalize Cmn and write it in terms of three
orthogonal vectors, possibly with different weights. There-
fore, no essentially new features follow from considering
more than three directions.

Finally, we note that all the above calculations, as well
as those in preceding works [1–4], assume that Alice and
Bob have coordinate frames with the same chirality (this
can be checked locally by using weak interactions). If
the chiralities are opposite, then all the directions inferred
by Bob should be reversed (because directions are polar
vectors while spins are axial vectors).

In summary, we have shown that a single structureless
quantum system (a point mass in a Coulomb potential) can
transfer information on the orientation of a Cartesian coor-
dinate system with arbitrary accuracy. This conclusion is
very surprising. No spherically symmetric classical object
can achieve this result. Only those having an asymmetric
internal structure, such as an asymmetric rigid body, can
reliably transmit a Cartesian frame. A spherically symmet-
ric top can at most indicate one direction (that of its angular
momentum). This is one more example of the remarkable
ability of quantum systems to encode information more ef-
ficiently than classical ones.
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