
VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001

167206-1
Two-Dimensional Randomly Frustrated Spin-1���2 Heisenberg Model
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We investigate the properties of S � 1�2 Heisenberg clusters with random frustration using exact
diagonalizations. This is a model for a quantum spin glass. We show that the average ground state spin
is S ~

p
N , where N is the number of sites. We also calculate the magnetic susceptibility and the spin

stiffness and low-energy excitations and discuss these in terms of a semiclassical picture.
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Frustrated quantum spin systems continue to attract
much interest. Such systems show rich and complex be-
havior, including complex ground states, with or without
long-range magnetic order, quantum phase transitions at
T � 0, and novel excitations/quasiparticles. Most work
has focused on model systems with translation symmetry,
in which the frustration is geometric in origin, resulting
from competing antiferromagnetic exchange interactions.
Typical examples are the triangular lattice [1,2] and the
J1-J2 model on the square lattice [3–5]. We refer to such
systems as “regularly frustrated.” A recent review of phase
transitions in frustrated antiferromagnets [6] discusses
many of these issues, particularly for 3D systems. A
general field theoretic approach is discussed in a recent
book [7].

In contrast to these cases are systems where defects
and/or random interactions or fields lead to frustration.
Doty and Fisher [8] investigated the effects of both random
fields and random exchange in the spin-1�2 XXZ chain and
found a quantum phase transition controlled by exchange
anisotropy. Sandvik [9] considered a square-lattice anti-
ferromagnet with up to 10% ferromagnetic bonds but was
unable to reach the interesting spin-glass regime. There
have also been a number of studies of randomly diluted
systems, but since these are not, in general, frustrated we
do not discuss them further.

The most extreme case of frustration by exchange
disorder occurs in spin-glass systems [10]. There is an
enormous body of theoretical work on models of spin
glasses, but the bulk of this is on Ising or classical XY and
Heisenberg models. The earliest work on quantum spin
glasses, an attempt to apply replica theory to the spin-S
quantum model with long-ranged Gaussian interactions,
is due to Bray and Moore [11]. The same model has been
considered more recently via an SU�N � generalization
[12], but the relationship of these studies to the more
realistic short-range interaction case remains unclear. To
our knowledge the only study of a finite S short-range
spin-glass model is the work of Nonomura and Ozeki [13],
who carried out exact diagonalizations on small clusters.

The present Letter is strongly motivated by Ref. [13]
and extends that work in several ways. We consider small
clusters of S � 1�2 spins with Hamiltonian
0031-9007�01�87(16)�167206(4)$15.00
H �
X
�ij�

JijSi ? Sj , (1)

where Jij are random exchange interactions. Two models
for randomness are used: the 6J model with

P�J� �
1
2d�J 2 1� 1

1
2d�J 1 1� , (2)

and the Gaussian model with

P�J� �
1

p
2p

e2J2�2. (3)

with mean 0 and standard deviation 1. We use exact diag-
onalizations for clusters of N � 10, 16, 18, 20 spins with
periodic boundary conditions. These clusters have the
symmetry of the square lattice, and hence the results can
be extrapolated, using finite size scaling, to the infinite lat-
tice. We have also carried out some calculations with free
boundaries, in which case our results may be relevant to
magnetic nanoparticles.

The first question to be addressed is the average spin
of the ground state. Using at least 500 different randomly
selected bond configurations for each cluster size, we de-
termine the ground state spin quantum number S for each
realization, and the mean value and standard deviation. Of
course, for the homogeneous antiferromagnet S � 0 rigor-
ously, but for random interactions we find S values from 0
to 6 (for the larger clusters). Figure 1 shows histograms for
N � 18 (periodic boundary conditions and 2000 samples)
for both the 6J and Gaussian cases, together with the dis-
tribution which would be expected in the absence of inter-
actions (the number of combinations by which one can add
18 spins 1�2 to get the total spin S). The histogram for the
Gaussian model is slightly shifted to larger S compared to
that for the 6J model, and the pure statistical distribution
is shifted further up. However, all in all the distributions
are very similar.

From the statistics of ground state spin quantum num-
bers we have computed the average value of S2. One can
say that this is an average value of the maximum z projec-
tion of the spin squared. This quantity has a more straight-
forward semiclassical meaning than �S2� � S�S 1 1�. In
the thermodynamic limit N ! ` these two quantities co-
incide. The value of S2 is plotted in Fig. 2 versus N ,
© 2001 The American Physical Society 167206-1
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FIG. 1. The ground state spin distributions (N � 18 and
2000 samples) for both the 6J and Gaussian models, together
with the distribution which would be expected in the absence
of interactions.

the number of spins in the cluster. While there is some
scatter, due both to limited statistics and to the different
orientations of clusters, the data are consistent with a lin-
ear dependence of S2 on N shown by the dashed lines. In
particular,

6J model: S2 � 0.120N ,

Gaussian model: S2 � 0.202N .
(4)

This means that the average spin per site varies as 1�
p

N
and vanishes in the thermodynamic limit. This N depen-
dence is exactly what would be expected from classical
fluctuation theory, for a system of spins with random ori-
entations, though our system is in the extreme quantum
limit. If we denote the length of the effective classical
spin by Seff, then �S2� � NS2

eff. This yields Seff � 0.35
for the 6J case and 0.45 for the Gaussian case, compared
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FIG. 2. The average ground state spin squared versus size of
the cluster. The triangles correspond to the 6J model, and the
squares correspond to the Gaussian model.
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to 1�2 for noninteracting classical spins. The quantity is
reduced due to quantum fluctuations, and we observe that
quantum fluctuations are greater in the 6J model than in
the Gaussian case.

From the same calculations we obtain the ground state
energy per spin E0�N , averaged over at least 500 inde-
pendent configurations. These values are given in Table I.
There is little variation between different clusters, indicat-
ing that these results are close to the thermodynamic limit.
As expected, the Gaussian model yields slightly higher
energies.

We have also computed the average spin-glass order pa-
rameter in the ground state m2

sg �
1

N2

P
i,j�Si ? Sj�2, where

the line denotes a configurational average. The values of
this quantity, averaged over 500 random bond configu-
rations, are given in Table I. Plotting the results
versus 1�N shows a linear variation, which, when ex-
trapolated to the bulk limit, yields m2

sg � 0.01 for both
6J and Gaussian cases. This value agrees with the
estimate in Ref. [13]. The effective spin length Seff can
be estimated from the spin-glass order parameter, via
m2

sg � S4
eff�cos2u� � S4

eff�3, which gives Seff � 0.42,
consistent with the estimate above.

As well as the ground state we have studied properties
of the low-lying excitations of the finite clusters. We have
determined numerically the spin quantum number of the
lowest excited state and the energy gap for at least 500
realizations of bond configurations for N � 10, 16, 18,
and 20 as before. We observe that predominantly (typically
97% of cases) the spin of the first excitation is S1 � S0 6

1, where S0 is the spin of the ground state. In Table I we
present f1 and f2: the fraction of configurations which
have S1 � S0 1 1 and which have S1 � S0 2 1, for both
6J and Gaussian models. We also give the average energy
gap DE for both models, for those cases where S1 � S0 6

1. The average gap for S1 � S0 1 1 is practically the

TABLE I. The data for different cluster sizes N and for two
types of random distribution. E0�N is the average ground state
energy per site; m2

sg is the spin glass order parameter; f11 is the
fraction of configurations which have spin of the first excitation
S0 1 1, where S0 is spin of the ground state; f21 is the fraction
of configurations which have spin of the first excitation S0 2 1;
DE is the average energy gap.

N 10 16 18 20

6J E0�N 20.493 20.498 20.500 20.500
model m2

sg 0.051 0.0355 0.0325 0.0303
f1 0.552 0.528 0.504 0.564
f2 0.422 0.454 0.464 0.418
DE 0.234 0.125 0.100 0.091

Gaussian E0�N 20.467 20.471 20.472 20.473
model m2

sg 0.050 0.0358 0.0332 0.0306
f1 0.512 0.484 0.466 0.510
f2 0.474 0.504 0.512 0.462
DE 0.179 0.078 0.067 0.057
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same as that for S1 � S0 2 1. The frequency f2 appears
systematically less than f1. We give an explanation of
this below.

The results for the lowest excitations can be understood
within a semiclassical picture, valid for large N . We denote
by E0 and j0� the energy of the ground state, which has
total spin S0 ~

p
N, and the corresponding wave function

with maximum Sz � S0. We now consider an external
magnetic field B in the z direction. The system will adopt
a new ground state, with energy

EB � E0 2 S0B 2
1
2 xNB2, (5)

where x is the magnetic susceptibility per site. The state
j0�, which will precess about the z axis with Larmor fre-
quency v � B, is a “rigid body” excitation in which the
spins precess coherently. Hence its energy with respect to
EB is simply dE � S0B 1

1
2Iv2. Comparing this with

(5) gives the effective moment of inertia I � Nx. Simi-
lar considerations can be also applied to the 2D quantum
antiferromagnet and lead to the known results [14].

The lowest excitations thus correspond to the states of a
2D quantum rotor with energies

EL 2 E0 �
L2

2I
�

L2

2Nx
, (6)

where L � 0, 61, 62, . . . is the angular momentum. The
total spin of the corresponding excited state is S � S0 1

L. Thus the lowest excitations will have S1 � S0 6 1, as
observed in the numerical results. Note that Eq. (6) de-
scribes rotations around the z axis. This is why it is differ-
ent from that for the antiferromagnet [14] which describes
3D rotations. In addition to the requirement N ¿ 1 for
this approach, we also require jLj ø S0 �

p
N to justify

the formula (6). In our numerical calculations this inequal-
ity is only weakly satisfied, and we believe this is the rea-
son for the number of samples with S1 � S0 2 1 being
somewhat less than with S1 � S0 1 1.

In the above consideration the susceptibility x corre-
sponds to the magnetic field directed along the total clus-
ter spin. We argue that the susceptibility determined in
this way from the cluster data extrapolates, in the thermo-
dynamic limit, to the total susceptibility and not to x� (as
in the antiferromagnet). This is because, in the N ! `

limit, the B2 term in (5) will be dominant, and the energy
will be independent of the spin direction.

From (6) we also see that the energy gap should behave
like 1�N. In Fig. 3 we plot the quantity 1�2x � NDE
versus 1�N . Although finite size corrections appear to be
large, a rough extrapolation to N � ` gives for the mag-
netic susceptibility x � 0.40 (�6J model), and x � 0.91
(Gaussian). These values are about an order of magnitude
higher than for the 2D quantum S � 1�2 antiferromagnet.
Another interesting point is that the finite size correction is
of the opposite sign compared to that for the 2D quantum
antiferromagnet.
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FIG. 3. The average gap DE multiplied by the size of the clus-
ter versus inverse size of the cluster. The triangles correspond
to the 6J model, and the squares correspond to the Gaussian
model.

The final quantity we have computed is the spin stiffness
rs, which is a measure of the rigidity of the ground state
to a small twist u,

dE0 �
1
2

rs

Z
�=u�2 d2r , (7)

where E0 is the ground state energy. Nonzero spin stiff-
ness, in the thermodynamic limit, indicates a long-range
magnetic order in the system. Previous calculations of rs

for finite antiferromagnetic clusters [15] have used a modi-
fied Hamiltonian in which the quantization axis in the twist
direction is rotated by Du for neighboring sites, leading to
phase factors in the exchange constants. This method of
calculation assumes that the system has an intrinsic spatial
periodicity, so it is applicable to ferromagnetic or antifer-
romagnetic states. However, we found that it cannot be ap-
plied to a random system. This is why we use a different
approach. As the exact diagonalization method yields not
only the ground state energy but also the ground state wave
function C for each cluster, we impose the twist directly
on the wave function, Cu � UuC, where Uu is the unitary
transformation which rotates each subsequent spin along a
given direction by an additional angle Du. The change
of the energy under the twist, dE0 � �CujHjCu� 2 E0
is calculated explicitly, and comparison with (7) gives the
spin stiffness. To avoid ambiguity we have chosen clus-
ters with free boundaries and with the twist imposed along
the x direction. Table II presents values of rs for various
clusters, averaged over 500 bond configurations. There is
a weak decrease of rs with size of the cluster, but the scat-
ter due to different shapes does not allow us to make a
reliable extrapolation. Therefore we take an average over
the cluster’s value as an estimate for the stiffness. We have
also performed similar calculations for antiferromagnetic
clusters and find that the data are very similar: a small
scattering and a weak decrease with size. However, in this
case we know the thermodynamic value and hence find
167206-3
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TABLE II. The average spin stiffness rs for different rectan-
gular clusters. The twist is imposed along the x direction.

Lx 3 Ly 4 3 3 6 3 3 3 3 4 4 3 4 5 3 4

6J model 0.220 0.208 0.214 0.200 0.198
Gaussian model 0.194 0.190 0.190 0.189 0.190

that our cluster calculations overestimate the stiffness by
the factor of 1.4. Assuming that the finite size scaling fac-
tor for the random system is the same we come to the fol-
lowing estimates for the stiffness: rs � 0.15 (6J model)
and rs � 0.14 (Gaussian model). These values are just
slightly less than the spin stiffness for the 2D quantum an-
tiferromagnet on the square lattice.

Having the spin stiffness and the magnetic suscepti-
bility we find the velocity of the Goldstone spin wave
c �

p
rs�x (see Refs. [10,16]), c � 0.6 (6J model), and

c � 0.4 (Gaussian model). This should be compared
with c � 1.67 for the 2D quantum antiferromagnet on
the square lattice. The low temperature specific heat will
be due to the Goldstone spin waves and thus will have
a T 2 temperature dependence. We propose that this will
be generic for disordered isotropic 2D quantum spin sys-
tems and explains, for example, the data for the S � 3�2
Kagome spin glass [17]. This should be contrasted with
Ising spin glasses where the specific heat is due to the lo-
calized excitations and is linear in T .

In summary, we have investigated aspects of highly dis-
ordered S � 1�2 quantum spin systems at zero tempera-
ture by means of exact diagonalizations of small clusters
of up to 20 spins. Averaging over disorder, we find (i) the
total spin quantum number scales as S ~

p
N , (ii) there

is evidence of spin-glass order in the ground state, in the
thermodynamic limit, (iii) the lowest excitations and en-
ergy gap for clusters are consistent with the predictions of
a semiclassical theory, and (iv) the spin stiffness does not
appear to scale to zero in the thermodynamic limit. Two
models for the random exchange have been used, a 6J
model and one with Gaussian exchange. There appears to
be no significant qualitative difference between these two
cases. Although we have used square lattice clusters with
nearest-neighbor interactions and with periodic boundary
conditions, to model the behavior of an infinite square lat-
tice, we believe our results are more general. Although
our results are obtained for rather small clusters, finite size
effects appear to scale regularly and allow extrapolation to
the bulk limit with reasonable confidence.

There are two ways in which our results could be related
to real systems. The first is to quantum spin glasses, which
have received little attention in the literature. However, one
needs to be cautious in extrapolating from small clusters
to systems as complex as spin glasses. An alternative
application might be to disordered magnetic nanoparticles.
We know of no immediate candidates. However, recent
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work on Mn12 and Fe13O3 spin clusters [18] (which are
not disordered) suggests that this is not impossible.

Finally we remark on a recent study of a system of N
randomly interacting fermions [19], in which the authors
argue that ground states with zero and maximum spin will
dominate. The evidence from our work is that this effect
does not occur in spin clusters.

We gratefully acknowledge discussions and correspon-
dence with C. Hamer, A. Sandvik, and V. Zelevinsky and
support from the Australian Research Council.

Note added in proofs.—A recent Letter by Arrachea
and Rozenberg [20], which appeared after the submission
of our Letter, addresses similar issues. In particular, they
also observe that �S� ~

p
N .
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