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Local Defect in Metallic Quantum Critical Systems
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We present a theory of a single point, line, or plane defect coupling to the square of the order parameter
in a metallic system near a quantum critical point at or above its upper critical dimension. At criticality,
a spin droplet is nucleated around the defect with its core size determined by the strength of the defect
potential. Outside the core a universal slowly decaying tail of the droplet is found, leading to many
dissipative channels coupling to the droplet and to a complete suppression of quantum tunneling. We
propose an NMR experiment to measure the impurity-induced changes in the local spin susceptibility.
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The behavior of “droplets” of local order in a
nonordered background is an issue of wide relevance in
condensed matter physics. One particularly interesting
subclass of problems concerns droplets induced by defects
in nearly critical systems. A long-standing problem in
heavy fermion physics concerns the very small magnetic
moments which have been observed in several materials
[1,2] and may be related to grain boundaries and other
structural defects [3,4]. In a colossal magnetoresistance
material, magnetic order was observed to be enhanced
near grain boundaries [5]. A related issue is the mag-
netism induced in high temperature superconductors by
apparently nonmagnetic substituents such as Zn [6], which
have been interpreted [7,8] as spin droplets induced in a
nearly critical system (although other interpretations also
exist [9]). Nucleation of regions of charge density wave
order around defect sites on the surface of a “correlated”
material was reported by [10]. “Quantum Griffiths” effects
and “Kondo disorder” are presently of intense interest
[11–14]. The problem bears on the fundamental issue
of the Kondo effect near a quantum critical point [15].
Finally, recording of information involves the polarization
of small domains, whose long time dynamics and stability
are of great importance.

This Letter presents the theory of the local polariza-
tion (“droplet”) induced by a single defect in an otherwise
nondisordered system which is near a quantum critical
point at or above its upper critical dimension, du. These
restrictions allow a controlled theoretical treatment and
apply to a wide range of systems including metallic mag-
nets in dimensions d � 2, 3 [16,17] and “quantum para-
electric” (i.e., nearly ferroelectric) systems in d � 3 [18].
We study defects which couple to the square of the order
parameter, i.e., change the “local Tc,” and thus may create
small regions (droplets) where the order parameter is non-
vanishing at least on short time scales. We address three
questions: Under which circumstances does the defect cre-
ate a droplet? What is the size and other properties of the
droplet? What are the relevant fluctuations? Our work
is complementary to that of Vojta and Sachdev [19], who
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studied a linear coupling of the defect to the order parame-
ter in a quantum critical system below du, and differs in
several aspects from the related work of Castro-Neto and
Jones [12,13].

Our starting point is a quantum Ginzburg-Landau ac-
tion for an order parameter field f. Halperin and Varma
used a similar approach for a classical system [20]. After
obtaining the mean-field solution we consider fluctuation
corrections, which are tractable because the dimension of
the system is above du. Our action, in conveniently scaled
variables, is S � Sstat 1 Sdyn with

Sstat �
1
2

Z E0�T

0
dt

Z
ddx

3
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�V �x� 1 k2�f�x, t�2
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æ
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Here, k determines the distance of the bulk system to the
critical point. We measure lengths in units of the bare
correlation length j0 of the problem (typically of the or-
der of a lattice constant) and measure energies in terms
of the condensation energy E0 obtained by evaluating the
static, spatially uniform free energy with k � 1. In the
following, we consider only symmetrical defects, which
are characterized by a dimensionality dd (i.e., the num-
ber of dimensions along which the defect potential, V , re-
mains constant), a length scale a (expected to be &j0)
over which V decays in the D � d 2 dd transverse di-
rections, and a dimensionless strength y � 2

R
dDr V �r�

(y . 0 corresponds to a local tendency towards order).
Here, r refers to the D � d 2 dd transverse components
of the d-dimensional vector x, where dd � 0, 1, 2 corre-
sponds to a point, line, and plane defect, respectively.

The dynamic term Sdyn takes the general form
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T
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X
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where the coefficients c and G depend on whether the sys-
tem is overdamped (metallic case) or not, on the symme-
try of the order parameter, and on whether it is conserved.
Examples include (i) the undamped Ising antiferromagnet,
with G21 � 0 and c � const; (ii) the undamped Ising fer-
romagnet with a conserved order parameter, G21 � 0 and
c � 1�q; (iii) the metallic (overdamped) antiferromag-
net [16,17] G � const; (iv) the metallic Ising ferromag-
net Gq � q. The form of Sdyn combined with the static
part of the free energy defines a (mean-field) dynamic ex-
ponent z which is z � 1, 2, 2, 3 respectively, for the cases
listed above. The effective dimensionality of the quantum
phase transition problem defined by S is deff � d 1 z and
we restrict it to deff $ 4. These expressions assume that
the droplet is small enough that all relevant bulk electronic
states may penetrate it; we show below that this assump-
tion is correct for the droplets we consider.

We now sketch the essential features of the mean-field
solution (details will be given elsewhere [21]). We fo-
cus only on the transverse dimensions and assume V �r .

a� � 0 so that for r . a the mean-field equation is

2=2f0 1 k2f0 1 f3
0 � 0 . (3)

For 0 # k ø 1, the solution is of the form f0�r� �
r21

0 f�r�r0,kr0�, where f is dimensionless. The length
scale r0 is determined by connecting the solution of
Eq. (3) (i.e., for r . a) to the solution for r , a and
thus depends on the defect strength, y. For kr0 . 1 the
f3 term may be neglected at all r and the solution is the
familiar exponentially decaying solution. For kr0 , 1
and D # 3, the behavior at r , k21 is controlled by
the nonlinearity and the scale r0 defines the size of the
droplet. The results are summarized in Table I.

In D � 1, 2, and in D � 3 up to logarithms, the
r0 , r , k21 behavior of f0�r� is independent of the
short length scale physics encoded in r0. In all dimen-
sions,

R
dDr f0�r� diverges at criticality and, in D $ 2,R

dDr f
2
0 �r� diverges. Thus many physical properties are

dominated by the r . r0 “tail” of f0�r�. Figure 1a shows
a schematic picture of the droplet amplitude.

The scale r0 may be estimated by substituting our
results for f0�r� into Eq. (1) and minimizing with respect
to r0. This also determines the binding energy, Ebind,
of the droplet which forms at temperatures T , Ebind.
Alternative approaches including scaling, exact solutions
�D � 1�, and numerics give identical results [21]. In all
cases the energetics are dominated by the droplet “core”

TABLE I. Approximate behavior of a droplet wave function
in different length (r) regimes and relative dimensionalities (D).
The gD are constants; r0, k are defined in the main text.

D r , r0 r0 , r , k21 k21 , r

1 g1r
21
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p
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2 ke2kr

2
g2 ln� r
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1�r e2kr�r1�2

3 g3 ln21�2� r0
r ��r e2kr ln21�2�kr0��r

.3 gDr0 rD23
0 �rD22 e2kr r �12D��2
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region r , r0. At criticality, an arbitrarily weak potential
induces a droplet in D � 1, 2 but in D � 3 a critical
strength is required. In D � 1, r0 � y21 and Ebind �
2E0y3 while, in D � 2, r0 � e1�y and Ebind �
2E0ye22�y. In D � 3, a critical value y� � 1 is re-
quired for droplet formation, and, for y . y�, r0 is of
order a while Ebind � 2E0

y
y� � y

y� 2 1�a22. The droplet
size cannot exceed k21, which yields an estimate for
the critical potential y��k� � 2k �D � 1� and y��k� �
22p� log�ka� �D � 2�. The droplet magnetization Md

in the ferromagnetic case is given by the integral of f0�r�
which diverges as k12D (logarithmically in D � 1) as
criticality is approached. In an antiferromagnetic system
with characteristic wave vector Q, Md � jQj12D which
for D $ 1 is a number of order unity even at criticality.
The droplet potential opens a local gap in the bulk elec-
tronic spectrum. The penetration of these gapped states
into the droplet is controlled by the length scale L�r� �
yFj0�E0f0�r�. In D � 3 our result for f gives L�r��r �
ln�r0�r�1�2 . 1 so the properties (especially dissipation)
are bulklike everywhere. In D � 1, 2 we have L�r0��r0 �
yFj0�E0, where typically yFj0�E0 * 1, again implying
bulklike dissipation. However, for yFj0�E0 ø 1 a modi-
fication of the dissipation term is required [21].

Gaussian fluctuations may be treated by expanding to
quadratic order about the mean-field solution, leading to
the action,

SGF � Sdyn 1
T
2

Z
ddx

X
ivn

c�x, vn�bLc�x, vn� , (4)
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FIG. 1. (a) Schematic r dependence of the droplet amplitude,
f0�r�. (b) Dependence of even parity wave functions for k �
0.5 and k � 1.5 on the distance from the defect. Inset: near-
defect (r � r0) region for k � 0.5.
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where bL � k2 1 V �x� 1 3f
2
0�x� 2 =2

x. bL has only
positive energy eigenfunctions. At criticality all of these
are extended, but if k fi 0 then, for y in a small range
above y�, a bound state of energy 0 , E , k2 may
occur. The form of the potential (weak slowly varying
repulsion with an attractive center) leads to nonmonotonic
wave functions with an upwards cusp at the defect scale
a, a decrease with distance in the range between a and r0,
and then (for extended states) an increase back to the unit
amplitude of a propagating plane wave. This is shown
for two even parity wave functions in Fig. 1b. The effect
of Gaussian fluctuations on the droplet size and shape
may be computed in terms of the difference between the
eigenfunctions of bL and of k2 2 =2 and is found [21] not
to change the long distance behavior of the droplet.

A more important class of fluctuations changes the ori-
entation of the droplet. In a compact �dd � 0� droplet
these are rotations and “instanton” processes in which
the droplet collapses and reforms. In extended �dd . 0�
droplets the important processes are motions of domain
walls. Here, we sketch the results for a compact droplet;
details and an analysis of the moving domain wall case will
be given elsewhere [21]. The dynamics of an isolated (not
embedded in a critical system) droplet have been previ-
ously studied [22]; the new feature here is the overdamped
dynamics (in the metallic case).

We first consider a droplet with Ising symmetry, in
which case the instanton, i.e., the collapse of the droplet,
is the important fluctuation process. To estimate the action
we substitute the ansatz f�r,t� � f0�r�h�t� into Eq. (1)
and retain leading time derivatives. We find that the action
corresponding to 2N instantons is

S2N �
g

2

X
ifij�1,...,N

log� yi 2 yj � �21�i1j 1 2NS0 , (5)

with the single-instanton action S0 given by S0 � �y0

z 1
m
y0

� 1
2Ng

4

R1
21 du

R1
21 dy log�1 1 y2

0 �u 2 y�2�, z �

15E0��4Ebind�, m � E2
0

P
q c22

q f0�q�2, and g �
E0

P
q G21

q f0�q�2. The quantity y0 is the duration of an
instanton in units of E21

bind and is found by minimizing S0.
Note that both m and g diverge as k ! 0 and that g � 0
in undamped models. In the weak dissipation �g ø 1�
limit the standard macroscopic quantum tunneling analy-
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sis [23] leads to S� y0� � 8
p

m�z 1 6mgz 1 O �g2� so
that the “bare” droplet tunneling rate is �E0e2S� y0� and
vanishes as criticality is approached. Instanton-instanton
interaction effects, which arise from the first term in S2N ,
are handled via a perturbative renormalization group treat-
ment, and, if g is less than a critical value �1, dissipative
effects reduce the tunneling rate but not to zero.

In a metallic system near criticality, g ¿ 1, and
the conventional analysis does not apply. Our detailed
results depend on the ratio m�g. If m�g ¿ 1 (fer-
romagnetic case) then minimization leads to S� y0� �
2g�log�m�2g� 1 1� while for m�g ø 1 we find S� y0� �
3m�g�6m�1�3. In either case, dissipation strongly sup-
presses the bare tunneling rate, and the large value of g
puts the action on the localized side of the Caldeira-Leggett
phase boundary, implying that tunneling processes are
completely suppressed on long time scales.

Our treatment closely parallels Hamann’s formulation
[24] of the Kondo dynamics of a single spin in a non-
critical metal. Hamann found S� y0� � ln�1�JN0� (J is
the Kondo coupling and N0 is the Fermi surface density
of states) and g � �1 2 JN0�2. The crucial difference is
that in our problem the large size of the droplet allows
many dissipative channels to couple to it, leading to much
stronger dissipative effects. Castro-Neto and Jones [12] ar-
gued that the tunneling of a droplet could be mapped onto
a single-channel Kondo problem; in our model this is not
the case. A subsequent paper [13] considered a droplet
consisting of a large number of elementary S � 1�2 spins
in d � 3 locked together by some magnetic interaction
in a nearly critical system. They neglected the 1�r tail
of the droplet so their specific results differ from ours.
They found that, for antiferromagnetic systems, droplets
as large as 103 spins could tunnel and that dissipative ef-
fects only became important below an exponentially small
scale, leaving a wide regime where quantum Griffiths be-
havior might occur, whereas we find that near criticality
dissipation always dominates.

In droplets with XY or higher symmetry, rotational fluc-
tuations must be considered. We begin from an action of
the type discussed in [25] and assume that f is character-
ized by an amplitude f0�r�, obtained by solving Eq. (3),
and a direction n�t� � �cos���u�t����, sin���u�t����, 0� specified
by an angle u. Expanding in the angular variables and re-
taining leading time derivatives gives
Sxy �
1
2

X
k,v

x21
zz �k, v� jfz�k, v�j2 2

gxy

2

Z
dt1 dt2 ≠tn�t1� ? ≠tn�t2� ln

µ
t

2
0 1 �t1 2 t2�2

t
2
0

∂

2
uM2

8

Z
dt �i≠tn 3 n ? bz 1 hz�t��2 (6)

with M2 �
R

dDr f
2
0 �r�, h�t� � 2

R
ddr f0�r� dfz�r, t��M2, and gxy � �2p�2d

R
ddq jf0�q�2j�Gq. We thus obtain

the action expected for a rotor with a large moment of inertia �M� in a dissipative environment, precessing in an effective
magnetic field caused by the background spin fluctuations. Reference [26] indicates that in the large dissipation limit
the subtleties associated with spin quantization may be neglected. A straightforward variational estimate then yields
�n�t�n�0�	 � t2x with nonuniversal x . 1�2, corresponding to a divergent susceptibility.
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FIG. 2. Dependence of the Gaussian fluctuation contribution to
the NMR relaxation rate on the distance from the defect, calcu-
lated for z � 2, d � 2, and D � 1 and two distances from criti-
cality. Inset: expanded view of the near-defect (r � r0) region.

The presence and fluctuations of the droplet are, in prin-
ciple, observable via NMR measurements of the spin lat-
tice relaxation rate, T21

1 �r� � T Imx�r, v��v, and the
local Knight shift. There are two different contributions:
from changes, due to the droplet, in the extended “Gauss-
ian” spin fluctuations, and from the presence and tunneling
of the droplet itself. The two contributions have very dif-
ferent time scales and position dependences. The Gaussian
fluctuations have the characteristic frequency v � kz and
give rise to the usual divergence of the bulk relaxation rate
as criticality is approached. This contribution to 1�T1T is
suppressed near the defect (cf. Fig. 2) because the droplet
reduces the amplitude of the low energy wave functions in
the near-defect region (cf. Fig. 1b). The droplet tunneling
processes provide a contribution to x 00�r, v� which is pro-
portional to the square of the droplet amplitude but varies
on a much slower time scale, which vanishes exponentially
as criticality is approached, so that these processes drop
out of the NMR frequency window, appearing instead as a
broadening ~ 1�r0 of the NMR spectrum. Details will be
given elsewhere [21].

In summary, we have presented a theory of a single de-
fect in a quantum critical system at or above its upper
critical dimension. A crucial property is the 1�r tail of the
droplet extending into the surrounding medium. The ease
with which line and plane defects induce regions of local
order may be relevant to the small moments observed in
heavy fermion systems [1,2]. Our finding that, near criti-
cality in a metallic system, droplets behave in an essentially
classical manner leaves no significant parameter regime in
which the quantum Griffiths behavior discussed in [12,13]
exists. The strong dimensionality dependence of our re-
sults has implications for the general issue of Griffiths be-
havior near quantum criticality. Finally, our results bear
on the fundamental question of the Kondo effect near a
quantum critical point [15]. A single spin in a nearly criti-
cal system will similarly induce a large droplet, which we
167202-4
believe will be prevented from tunneling by dissipative
effects.
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