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Nodal Quasiparticles in Stripe Ordered Superconductors
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We study the properties of a quasi-one-dimensional superconductor which consists of an alternating
array of two inequivalent chains. This model is a simple caricature of a striped high temperature su
perconductor, and is more generally a theoretically controllable system in which the superconducting
state emerges from a non-Fermi-liquid normal state. Even in this limit, “d-wave-like” order paramete
symmetry is natural, but the superconducting state can either have a complete gap in the quasiparticle
spectrum, or gapless “nodal” quasiparticles. We also find circumstances in which antiferromagnetic orde
(typically incommensurate) coexists with superconductivity.
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A key feature of the cuprate high temperature super-
conductors is that the “normal” state is not well described
as a Fermi liquid. Therefore, to understand the physics of
the transition temperature, the brilliantly successful BCS
theory, which presupposes [1] that the normal state is a
Fermi liquid, must be modified. Although the cuprate
high temperature superconductors are layered materials,
self-organized one-dimensional structures [2], or “stripes,”
have been widely observed, making plausible the idea
that at intermediate scales these materials can be thought
of as quasi-one-dimensional. The only theoretically well
understood example of a superconducting system with
a non-Fermi-liquid (NFL) normal state is a quasi-one-
dimensional superconductor. Here the “normal state” is
governed by the quantum critical physics of a decoupled
set of one-dimensional electron gases (1DEG); super-
conducting long-range order is triggered by interchain
coupling, and accompanied by a crossover to higher
dimensional physics [3].

Several salient features of the high temperature super-
conductors are naturally understood from this viewpoint
[3]. The fact [4] that in under and optimally doped ma-
terials, quasiparticles in the gap antinodal regions of the
Brillouin zone (BZ) exist only in the superconducting state
and have a quasiparticle weight [Z�T , x�] which vanishes
as the transition point is approached, either as a function
of the doped hole concentration, x, or of the temperature,
T , can, in our opinion, be understood only if the normal
state has no well defined quasiparticle excitons. The ex-
traordinarily one-dimensional dispersion apparent [5] in
the quasiparticle spectrum in this region of the BZ is in-
dependent evidence of a quasi-1D origin for the NFL be-
havior. That the zero temperature superfluid density, and
with it Tc, is roughly proportional to x is also simply un-
derstood in this way, as is the fact that the pairing scale,
D0, and the superconducting Tc appear to be distinct en-
ergy scales in the problem.

We thus propose studying the high temperature super-
conductors by adiabatic continuity from the quasi-one-
0031-9007�01�87(16)�167011(4)$15.00
dimensional limit. Conceptually, we imagine introducing
an explicit symmetry breaking field of strength h into the
physical Hamiltonian, so that for h large the problem is
literally quasi-one-dimensional, and can hence be solved
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FIG. 1. Schematic phase diagrams and qualitative RG flows
of an array of alternating A and B type chains with DA

s . 0
and DA

c � DB
c � DB

s � 0. The figures represent cuts through
a multidimensional parameter space. Interactions that couple
neighboring A and B chains increase along the x axis, while
the A to A and B to B couplings increase along y. The
RG flows in the neighborhood of the fixed points (except
C4) follow from the analysis presented in the text; the
phase boundaries and global flows are qualitative renderings.
The unstable fixed points represent decoupled chains (a),
the two fluid state with a 2D gapped superconductor on A
and an anisotropic Fermi liquid on B (b), and various critical
points (Cj). The phases controlled by the stable fixed points are
coexisting superconducting and antiferromagnetic order with a
full quasiparticle gap (b 0), a 2D nodal superconductor (g), and
a 2D fully gapped superconductor (d).
© 2001 The American Physical Society 167011-1



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
using the powerful nonperturbative methods developed for
the theory of the 1DEG. Then, so long as there is no phase
transition as a function of h, the results should be quali-
tatively correct, even as h ! 0. Moreover, so long as the
isotropic system has substantial local stripe order, many
of these results should even be quantitatively reasonable.
Empirical evidence which suggests that such explicit sym-
metry breaking is innocuous comes from experiments in
the strongly orthorhombic materials, Y2BaCu3O72d and
Y2Ba4Cu8O72d, where anisotropies in the in-plane super-
fluid density as large as a factor of 10 can be induced with-
out, apparently, affecting the qualitative physics of high
temperature superconductivity.

However, there is also experimental evidence of gapless
“nodal” excitations at low temperatures, deep in the
superconducting state. In all the simplest realizations of
a quasi-one-dimensional superconductor, for example,
an array of weakly interconnected doped two-leg t 2 J
or Hubbard ladders, the superconducting state has a gap
to all spin-carrying excitations, including quasiparticles.
The gapless and fully gapped phases of a superconductor
are necessarily separated by a quantum phase transition.
In order to substantiate the claim that the quasi-one-
dimensional limit is adiabatically connected to the physics
of the cuprates, it is at least necessary to determine
whether, and under what circumstances, gapless nodal
excitations exist.

It is important to stress that the issue of the “d-wave-
like” character of the order parameter (i.e., whether the
expectation value of the pair creation operator changes
sign under a 90± rotation) is distinct from the issue of the
existence of nodal quasiparticles. Even in a weak coupling
(BCS) superconductor, if the Fermi surface does not close
around the �k � �0, 0� or �k � �p, p� points in the BZ, it is
possible to have perfect d-wave symmetry without nodal
quasiparticles. For the two-leg ladder of the above cited
example, the superconducting pairing is known [6] to be
d-wave-like but fully gapped.

We will study the simple model effective Hamiltonian,
H � H� 1 H 0, of a quasi-one-dimensional system which
consists of an array of alternating, inequivalent (A and B
type) “chains.” For zero interchain coupling, H 0 � 0 (i.e.,
h ! `� , the problem is solved exactly using standard
bosonization methods; we refer to this limit as the decou-
pled fixed point, although in reality it is a high-dimensional
manifold of fixed points, parametrized by the various
Luttinger exponents of the 1DEG’s. It is indicated by
the point a in Fig. 1. By studying the perturbative
renormalization-group (RG) flows in the vicinity of the
decoupled fixed point, as well as the behavior at various
anisotropic 2D fixed points, we determine the qualitative
phase diagram and the character of the excitations in the
limit of small, but nonzero interchain coupling.

The decoupled fixed point Hamiltonian H� consists of
a sum of terms for each decoupled chain. This prob-
lem can be solved exactly using methods of bosoniza-
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tion [7] to express the Hamiltonian for each chain as a
sine-Gordon field theory for the spin and charge degrees
of freedom, respectively. The electronic field operators
on each chain can be expressed in terms of the charge
and spin fields, fn,s and fn,c, and their duals, un,s and
un,c, as

Cn,s�x� � eikn
FxCn,s,1�x� 1 e2ikn

FxCn,s,2�x� ,

Cn,s,6�x� � Nn,sei
p

p�2 �un
c 1sun

s 6fn
c 6sfn

s �, (1)

where the Klein factors obey �Nn,s,Nn0 ,s 0� � dnn0dss 0�
pa, a is the short-distance cutoff, s � 61 for up and
down spins, kn

F is the Fermi wave number of chain n,
and the bosonic fields satisfy �fn,a� y�, ≠xum,a 0�x�� �
idn,mda,a 0d�x 2 y�. For n even, the A chains, which
represent the stripe regions where the concentration of
mobile “doped” charges is high, are metallic but with a
spin gap D�A�

s . 0, i.e., a Luther-Emery liquid. Micro-
scopically, one can imagine that each A chain represents
the low energy physics of a doped two-leg or three-leg
t 2 J or Hubbard ladder [8]. The Fermi wave number,
k

�A�
F , is therefore far from the commensurate value, p�2;

experiment [5] suggests that in a variety of cuprate

superconductors, k
�A�
F � p�4. The remaining quantities

which characterize the A chains are a charge Luttinger
parameter, K�A�

c , and the charge and spin velocities, y�A�
c

and y�A�
s . The B chains represent the more lightly doped,

locally antiferromagnetic strips between stripes. We will
be interested in the case in which some doped holes
have leaked into these strips, so they have no charge
gap, but because they are still nearly Mott insulating

[9], k
�B�
F � p�2, K�B�

c � 1�2, and y�B�
c ø y�A�

c . We
will, however, also consider the cases in which umklapp
scattering opens a charge gap, D�B�

c , on chains B, which,
in addition, may or may not have a spin gap. In the more
interesting gapless case, spin rotation invariance implies
that at low energies the spin Luttinger exponent, K�B�

s ! 1.
The interchain coupling, H0, typically [10] generates in-

teractions that are relevant in the RG sense at the decoupled
fixed point. Starting from a microscopic viewpoint, one
would be tempted to take H 0 to consist of a single particle
hopping term which couples each A chain to its nearest
neighbor B chain. This interaction is manifestly irrelevant,
both because of the presence of a spin gap, and because of

the mismatch in Fermi wave numbers, k
�A�
F fi k

�B�
F . How-

ever, in the initial stages of renormalization, all imaginable
local terms consistent with symmetry are generated, both
relevant and irrelevant. We will therefore skip this initial
step, and directly study the perturbative b functions for
potentially relevant interchain couplings. Here we assume
that H 0 contains only the most relevant interactions, be-
tween first and second neighbor chains, for the range of
Luttinger exponents discussed above,
167011-2
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H 0 �
X
n

Z
dx

Ω
2tBB

X
s

�Cy
2n21,sC2n11,s 1 H.c.� 2 JBB

�S2n21 ? �S2n11 2 JAB�D̂y
2nD̂2n11 1 H.c.�

1 J 0
AB�D̂y

2n�C2n21,"C2n11,# 1 C2n11,"C2n21,#� 1 H.c.� 2 JAA�D̂y
2nD̂2n12 1 H.c.�

æ
, (2)
where D̂n 	 Cn,"Cn,# is the singlet pair creation opera-
tor, �S is the spin-density operator, and it is implicitly un-
derstood in the above expression that any piece of the
interaction that is rapidly oscillating (with wave number
2kF� is to be omitted. Here we have neglected possibly
relevant backscattering interactions which could poten-
tially promote charge-density wave (CDW) formation; the
basis for this is discussed in Ref. [10] and below.

The only nonstandard term in H 0 is the term propor-
tional to J

0
AB which removes a pair from an A chain,

rotates it by 90±, and reinserts it across the two neigh-
boring B chains; the sign of this term (after renormaliza-
tion, away from the decoupled, a, fixed point) determines
whether the superconducting order is d-like or s-like. Mi-
croscopic calculations [6] on t 2 J and Hubbard ladders
lead us to believe that most likely all the pair-tunneling
terms JX . 0. The d-like pairing tendency observed in
these calculations implies J 0

AB . 0, while the positivity of
the remaining JX implies an unfrustrated superconducting
state; e.g., JAB , 0 would imply “ p-junctions” between
neighboring chains.

We begin by considering the regime in which all of the
coupling constants in H 0 are small. In this limit, the system
is at the decoupled fixed point a. It is easy to determine
the (perturbative) role of the various processes in H 0. In
cases in which a gap prohibits the operation of one of these
interactions in lowest order, that interaction is manifestly
irrelevant; i.e., its dimension is infinite. Otherwise, to
leading order in powers of the interchain couplings, the
perturbative b functions have the form

dg
d lna

� �2 2 Dg�g 1 . . . . (3)

Dg is the scaling dimension of the perturbation with
coupling constant g. For Dg , 2, the operator is per-
turbatively relevant, and otherwise it is irrelevant. The
dimension of the various operators are listed in Table I.

TABLE I. Scaling dimensions of the interchain couplings at
the decoupled fixed point with DA

s . 0 and DA
c � 0.

DB
s � 0 DB

s . 0 DB
s � 0 DB

s . 0
DB

c � 0 DB
c � 0 DB

c . 0 DB
c . 0

tBB �1�4� �K�B�
c ` ` `

11�K �B�
c 1 2�

JBB �K �B�
c 1 1� ` 1 `

JAA 1�K �A�
c 1�K �A�

c 1�K �A�
c 1�K �A�

c

JAB �1�2� �1�K �A�
c �1�2� �1�K �A�

c ` `

11�K �B�
c 1 1� 11�K �B�

c �
J 0

AB �1�4� �2 1 2�K �A�
c ` ` `

1K �B�
c 1 1�K �B�

c �
-3
Forward scattering interactions between the charge cur-
rents and densities on neighboring chains are marginal.

We now return to the issue of the CDW couplings be-
tween chains; if relevant, these would lead to an ordered,
insulating state. In Ref. [10], it was shown that forward
scattering interactions between chains, whether direct or
induced by dynamical fluctuations of the stripe geometry,
strongly affect the scaling dimension of these operators,
tending to make them less relevant. In particular, there is
a finite regime of parameters, especially when the stripe
fluctuations are significant, where the CDW couplings are
irrelevant, and so can be neglected.

Since in all the cases considered here, the decoupled
fixed point is perturbatively unstable in some way, our next
task is to determine where the RG flows go.

The two fluid fixed point.— It should be clear from the
table that, under most conditions, all AB couplings are per-
turbatively irrelevant at point a of Fig. 1. Specifically, if
we set K �B�

c � 1�2, this is true so long as K �A�
c , 1. (The

phase diagrams in Figs. 1a, 1c, and 1d assume this con-
dition is satisfied.) Even if K�A�

c . 1 (as in Fig. 1b), the
AB couplings are typically more weakly relevant than the
couplings between like chains. We are therefore led to con-
sider the RG flows in the limit in which all such couplings
are set equal to zero, so that we have two interpenetrat-
ing, and decoupled, but genuinely two-dimensional sys-
tems. This limit is represented by the left-hand edge of the
phase diagrams in Fig. 1.

In general, there are many possible higher dimensional
fixed points to which the system could flow. Because the
system can lower its kinetic energy by allowing pairs to
move between chains [8], JAA is typically relevant tech-
nically so long as K�A�

c . 1�2. We will consider ex-
clusively the state in which the A subsystem has true
superconducting long-range order and a full spin gap. Be-
cause tBB always has lower scaling dimension than JBB so
long as DB

c � 0, the most likely situation is that system B
forms a highly anisotropic Fermi liquid. The correspond-
ing fixed point is labeled b in Figs. 1a–1c. However, ei-
ther if DB

c . 0 or if the residual interactions are sufficiently
strong to drive an instability of the nearly nested Fermi
surface, system B could order antiferromagnetically. The
fixed point with coexisting superconductivity in A and an-
tiferromagnetism in B is indicated by b0 in Fig. 1d.

The operators which couple A and B have entirely dif-
ferent scaling dimensions at the two-fluid fixed points,
b and b0, than at a. The two-fluid fixed point b is
unstable, due to the ordinary proximity effect. Specifi-
cally, in establishing the relevance of the operators JAB

and J
0
AB, the pair creation operator on A can be replaced

by their constant expectation value, while the pairing fields
167011-3



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
on B operate on a Fermi liquid state. For J
0
AB . 0, this

state is d-wave-like; the quasiparticle spectrum is

E2� �k� � �yF�kx 2 kB
F � 2 2tBB cos�kyL��2

1 
D̂A�2�JAB 2 2J 0
AB cos�kyL��2 , (4)

where x and y refer, respectively, to the directions par-
allel and perpendicular to the chains, yF, tBB, JAB, and
J

0
AB are now to be interpreted as renormalized parame-

ters at b, and L is the spacing between chains. There
remains the quantitative issue, which depends on the mi-
croscopic details, of the relative magnitudes of these cou-
plings. If jJABj , 2jJ 0

ABj, the quasiparticle spectrum is
gapless. This is a stable phase of matter, the nodal super-
conductor, described by the fixed point g in Fig. 1. We
have assumed that this inequality is satisfied in Figs. 1a
and 1b, where the RG flows run directly from b to g.
However, if jJABj . 2jJ 0

ABj, the flows run from b to the
fully gapped superconducting state, signified by the stable
fixed point d in the figure, as in Fig. 1c.

By contrast, at the fixed point b0, there are no finite di-
mensional operators which couple the two fluids since the
antiferromagnet has a charge gap and the superconductor
has a spin gap. This fixed point describes a stable phase
with two coexisting order parameters, and a complete gap
in the quasiparticle spectrum. Evidence of a phase with co-
existing magnetic and superconducting order, presumably
rendered glassy by quenched disorder, has been presented
[11,12]; it is a prediction of this study that the ordered state
has a fully gapped quasiparticle spectrum.

Fully coupled fixed points.— In addition to the stable
fixed points g and d, described above, there are a number
of other unstable fixed points whose existence is dictated
by the topology of the phase diagram (assuming that the
transitions are second order).

The phase transition between the nodal and the gapped
superconductors is governed by the fixed point C1 in the
figure. The universal properties of this transition can be
studied [13] in the weakly interacting limit. This transi-
tion, as approached from the nodal phase, is triggered by
deforming the gap function (or band structure) such that
two nodal points approach each other, and at the critical
point, coalesce. As a consequence, at the single nodal
point, the quasiparticle velocity in one direction vanishes.
Beyond the critical point, a gap opens in the spectrum.
By naive power counting, four fermion interactions are
irrelevant at this fixed point, so this is all there is to it. Even
when JAB is perturbatively irrelevant at a, strong pair-
tunneling will certainly produce superconductivity in B by
the proximity effect. Moreover, the resulting state will be
the fully gapped, ordered superconductor. Thus, there must
exist an unstable critical point, C2, similar to the smectic
metal to superconductor critical point of Ref. [10].

The critical point C3 in Fig. 1d is similar to one men-
tioned by Vojta et al. [13], for a transition, within a nodal
superconducting phase, to a state with broken translational
symmetry with an ordering vector which at C3 spans the
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nodal points. Conversely, the robustness of the nodal su-
perconducting phase embodied in Figs. 1a, 1b, and 1d,
mirrors the asymptotic decoupling of the nodal quasipar-
ticles from fluctuations associated with such a transition
when the ordering vector does not span the nodes. The
(as yet not analyzed) multicritical point C4 is required by
a minimal consistent construction of the RG flows.

Finally, it is clear that at the fixed point g the nodal
quasiparticles are well defined elementary excitations of
the system at arbitrarily low energy and long wavelength.
This is consistent with a widely held belief that such exci-
tations must exist, even though the high temperature super-
conductors are far from the BCS limit. However, what is
also clear from the circuitous flows that lead to this fixed
point in Figs. 1a and 1b is that these quasiparticles can,
under appropriate circumstances, be much less robust than
the superconducting state itself. Thus, even well below Tc,
where superconducting order is well established, the nodal
quasiparticles can still be ill-defined objects, and only be-
come sharp at very low temperatures. It is possible that
this observation reconciles the strong evidence [14] from
thermal conductivity of well-defined nodal quasiparticles
at T ø Tc with the evidence from photoemission [15] of
their nonexistence down to temperatures of order Tc�2.
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