
VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001

167007-1
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In a few compounds, magnetic ordering and superconductivity appear to arise at the same value of a
critical parameter. Assuming a model of magnetic ordering based on localized spins, this simultaneous
onset may be explained as a coupling of two conduction electrons via one localized spin. This is analo-
gous to magnetic order arising from coupling of two localized spins via one conduction electron.
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1. Introduction.—The compound UGe2 is paramagnetic
at high pressures. As the pressure is reduced, a ferro-
magnetic transition occurs at a certain critical value pc

[1–3]. The transition temperature rises from zero at pc

to a saturation value at low pressure. At the same pres-
sure pc, a superconducting transition occurs, with transi-
tion temperature initially rising with decreasing pressure,
but eventually declining to zero at a considerably lower
pressure. Thus, ferromagnetism and superconductivity not
only coexist over a certain pressure range, but appear to
arise together. It is proposed that the exchange interaction
of individual spins assumed localized on the uranium ions
with pairs of conduction electrons is responsible for this ef-
fect. This problem has been studied with some success in a
series of papers [4,5] in terms of diagrammatic many-body
theory, on the basis of the itinerant electron model. These
authors make the following argument: When magnetic or-
dering first arises, it is weak, and the attendant spin wave
spectrum is so “flat” and weak, that it cannot result in me-
diating an attractive electron pair interaction. Spin waves
do not fully describe the dynamic degrees of freedom of
the spin system. Otherwise stated, the corresponding trans-
verse susceptibility is ineffective. However, the longitudi-
nal susceptibility along the molecular field is still large. It
evidently describes the part of the local spin density not
tied up in collective motion. In this paper, we adopt this
viewpoint, but discuss it in terms of localized spins, rather
than an itinerant model. We assume that the magnetic tran-
sition occurs by some mechanism not described here. Once
it occurs, a small average polarization of each local spin in
a net mean exchange field arises, which facilitates binding
of electron pairs.

2. Cooper pairing.—Consider just two electrons enter-
ing with equal and opposite momenta above the Fermi sea.
Suppose that the electrons interact with a particular local
spin �S at lattice position �R by a contact interaction

Jv �S� �s1d�rc 1 �r�2 2 �R� 1 �s2d�rc 2 �r�2 2 �R�� ,
(1)

where v is an atomic volume, J the exchange energy, rc

the center of mass, and r the relative coordinate of the two
electrons. For any given state of the local spin �S, in the
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absence of the interaction (1), the singlet state of the pair,
normalized in volume V,
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of the pair, and the degeneracy is removed only to sec-
ond order in the interaction (1). (The spatial factors ensure
overall antisymmetry.) �k is the relative momentum of the
pair. Both wave functions are independent of rc, which af-
fects only their normalization. An average exchange field
will lift the degeneracy partly, but the singlet and the triplet
with the zero z component of spin remain degenerate in
lowest order. Resolution of the degeneracy is conveniently
discussed in terms of second quantization, for which
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k � one of the three states,
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as required in the following; jF� denotes the Fermi state.
(Note that in superconductivity theory, the pairing c

y
k"c

y
2k#

is usually described as singlet pairing; in fact, it is a su-
perposition of singlet and triplet with a zero z-spin com-
ponent. This is normally of no great consequence, except
in magnetic problems of the kind discussed here.) In this
notation, the form of the interaction (1) is

V � J
v

V

X

R

X

k,k0;a,b

�S ? �sabc
y
kack 0bei� �k2�k 0�? �R (4)

with plane wave states normalized to total volume V. In
terms of projection operators PS, PT of the singlet and
triplet manifolds and the states CS � PSC, CT � PSC,
the Schrödinger equation reads

�PSH0 2 E�CS 1 PSVCT � 0 , (5)

PTVCS 1 �PT H0 2 E�CT � 0 . (6)

Eliminating CT gives
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�PSH0 2 E�CS 2 PSVPT 1
E 2 PTH0PT PTVCS � 0 ,

(7)

CS is expanded in a series of pair states with zero net
momentum such as (2). However, the intermediate triplet
states in Eq. (7) will have all possible net momenta,
167007-2
since V does not conserve momentum. We write CS �P
k akc

S
k . With g denoting the propagator, ak satisfies

�2ek 2 E�ak �
X

k0

�cS
k , VgVc

S
k 0 �ak 0 , (8)

and VgV is evaluated in stages. We have, keeping only
“contracted” terms,
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Next, the propagator g, applied to this expression,
multiplies the first, second, and third terms in this sum
by g# � �E 2 el 2 ek 2 2hex�21, g" � �E 2 el 2 ek 1

2hex�21, and g0 � �E 2 el 2 ek�21, respectively. PSH0c
S
k

is simply 2ek � h̄2��mk2� 2 2ef . On the other hand,

for the intermediate triplet states c
T
l,k0 � c

y
l"c

y
2k 0", etc.,

carrying net momentum �l 2 �k0, we have PTH0c
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(z component of the triplet spin of C
T
l,k). Here, hex is

the (weak) average exchange field, evidently proportional
to J and to the mean value of Sz , considered small just
below the transition. In the formation of VgVc

S
k 0 , only a

few terms are found that survive the following criteria: (i)
correlation between different localized spins is neglected
in accordance with the neglect of spin wave modes, and
(ii) terms with exponentials that still depend on k0. These
eventually require k0 � k in the formation of the final
matrix element �cS

k , VgVc
S
k 0 �, and contribute negligibly

to the sum in (8), and (iii) terms such as S1Sz , etc. that
do not have a finite average in the weakly ferromagnetic
state. The surviving terms in VgVc
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k 0 are proportional to
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Since c
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k � 	Fj �cy
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k" 2 c2k"ck#�, this finally gives
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with N the number of lattice sites. The g’s may be written
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.

In the sense of perturbation theory, E 2 �ek 1 ek 0� may
be neglected in the numerator, since E is small and close
to the Fermi surface �ek 1 ek 0� is small. Hence, and since
�S1, S2� � 2Sz , Eq. (10) becomes, using v�V 
 1�N ,
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k , VgVc
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�
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say, whose average is finite if 	Sz� is finite. For the simplest
mean field models there should be a thermodynamic rela-
tion between that average and hex, but this is doubtful in
the present case of UGe2 with its pressure-driven magnetic
transition. [Apart from the E dependence, expression (11)
has the form of the pair interaction mediated, to lowest or-
der, by Einstein phonons. In strict perturbation theory, E
should be equated to zero. For the case of S � 1�2, the S
operators can be replaced by an extra fermion, and then it
should become possible to sum the entire ladder diagram
[6]. We do not pursue this matter here.] Equation (8) may
be written

ak �
1

E 2 2ek

1
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X
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�2Wk,k 0�ak 0 . (13)

With E equated to zero inside W , and the e close to the
Fermi surface, W is positive for positive h, and weakly
dependent on k, k0. Treating it as constant, Eq. (13) then
gives the usual relation of the BCS theory in the weak
coupling limit

1 � �2W �
1
N

X 1
E 2 2ek

,

which gives one bound state at negative E. This corre-
sponds to the “bonding orbital” of the resolved degen-
eracy. The antibonding orbital can be found by writing
C �

P
akc

S
k 1 bkc

T
k , and solving (5) and (6) together.

However, the result is obvious from the diagonal sum rule:
since the first order energies are equal (and taken equal
to zero), the sums of the bonding and antibonding ener-
gies must be zero. This means that the antibonding energy
value is submerged in the continuum.

3. Mean field theory.—We treat the many electron case
as a scattering problem, with a T matrix defined by the
relation TF0 � VF, and satisfying the equation

T � V 1 V
1

E 2 H0
T ,

where F0 and F are states of the Hamiltonians without and
with interaction, respectively. The effective Hamiltonian is
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H � H0 1 T , which, to second order in V , gives

H � H0 1 V 1 VgV , (14)

with g � 1��E 2 H0�, as before. If this is written in a
second quantized form, and the creation operators are writ-
ten to the left of the annihilation operators, the propagator
appears in the forms g", g#, g0, exactly as in Section 2.
Retaining only terms with S1 and S2 (for the same reason
as in Section 2), VgV is found to be proportional to
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Processing the g",# in the same way as before and relabeling
the terms in the sum where needed, gives for the interaction
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as in BCS theory with s-wave symmetry of the order
parameter.

4. Magnetic field dependence.—The exchange field hex
used here acts on the electron spins only and, unless spin-
orbit coupling becomes important, does not affect the elec-
tron orbits. Thus the Meissner effect should occur just as
in the usual superconductors. However, one must still ask
why the electrons should forego the gain of Zeeman energy
in favor of antiparallel pairing (in this theory, they are po-
larized only in the intermediate states as described by the
g’s). In the present notation, the Zeeman energy of a pair
is simply 2hex and will have to be less than the energy gap,
if the superconducting state is to prevail. Thus, using the
usual formula for the gap (with 2hex replacing the Debye
energy vD), we must have

2hex ,
2	hexSz�

sinh 1
N�0�W

with N �0� denoting the state density at ef . This is obvi-
ously impossible in the weak coupling limit. For stronger
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coupling, it will be satisfied if

1
N�0�W

& ln�1 1
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2 � , (16)

but then the theory may have to be carried to higher order.
If, nevertheless, this inequality is taken seriously, and in
Eq. (13), the k, k0 dependence of W is neglected altogether,
with �E 2 ek 2 ek 0� equated to zero, then

W � J2 	Sz�
hex

.

But hex is proportional to J	Sz�. Therefore W 
 J, so
that a high density of states near the Fermi level and
a large exchange coupling favor the superconductivity.
Reference [1] provides strong evidence that UGe2 is
a heavy fermion superconductor with effective mass
50 times the free mass, consistent with the conclusions of
this paper.
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