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Vortex dynamics has been investigated in the cubic �K, Ba�BiO3 superconductor using ac susceptibility
measurements on a large frequency range �0.03 Hz , v , 60 kHz�. Power law diverging barriers have
been obtained on both sides of the order-disorder transition line. The m exponent remains close to 5�2
(elastic creep value) in some part of the disordered phase and finally decreases at high temperature and/or
high field, in good agreement with the recent plastic collective creep theory [J. Kierfeld, H. Nordborg,
and V. M. Vinokur, Phys. Rev. Lett., 85, 4948 (2000)].
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One of the most complex phenomena observed in high
Tc oxides is the nonlinear response of vortices to a driv-
ing force. For small driving currents (i.e., smaller than
the critical current), vortices can hardly overcome current
dependent creeping barriers by thermal activation leading
to highly non linear current-voltage characteristics. In the
presence of randomly distributed point defects (so-called
collective creep model [1]) the elastic structure of the vor-
tex lattice is expected to lead to diverging barriers of the
form Uel� j� ~ j2m, where m depends on the size of the
creeping vortex bundle [2,3]. Strong evidence for those
diverging barriers in the ordered phase has been obtained
both by magnetic relaxation [4,5] and by transport mea-
surements [6] (for a review, see also [7]).

However, it has been suggested that the ordered vor-
tex solid transforms into a highly disordered vortex glass
above some transition field B��T� [3,8] and the descrip-
tion of the creep phenomenom in this phase remains an
open question. In particular, it is not clear whether the
collective creep formalism can still be used in this phase
or not. Indeed, it has been suggested by Abulafia et al. [9]
that plastic vortex creep should be associated with a non-
collective motion of dislocations in the vortex lattice (by
analogy with dislocated solids). The authors thus pro-
posed that the so-called fishtail effect in YBaCuO crystals
could correspond to a crossover in the flux dynamics from
an elastic to a plastic creep regime in which the activa-
tion energy would be described by a nondiverging barrier:

Unc
pl � j� ~ 1 2

q
j�j0

pl (where j0
pl is the critical current for

plastic motion). A similar formalism was then used in or-
der to describe the creep mecanism in the vicinity of the
peak effect in various cuprates [10].

On the other hand, it was suggested by Khalil [11]
that the contribution of plastic deformations to the
pinning energy could lead to a logarithmic divergence of
U�J� (assuming that the interaction potential increases
logarithmically), in good agreement with various re-
laxation data obtained in YBaCuO [7]. Alternatively,
it has been suggested by Fisher et al. [12] that power
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divergent barriers (with low m values) should also exist
in the so-called vortex glass state and Blatter et al. [1]
proposed that a renormalization of the shear modulus in
the presence of dislocations could lead to a reduction of
the m exponent down to m � 1�4. Similarly Kierfeld
et al. [13] recently extended the collective creep theory to
topologically disordered vortex solids. They have shown
that plastic vortex creep could still be described in terms of
driven thermally activated dislocations motion associated
with power law diverging barriers, Uc

pl� j� ~ j2m, where
m here depends on the dislocation bundle size (being of
the order of 1 for single dislocations and 0.4 2 0.5 for
dislocation bundles).

With the experimental point of view, the determina-
tion of the current dependence of the activation barrier
is a complicated issue. The energy barrier is often de-
duced from magnetic relaxation data for which the time
dependence of the current density can be related to U
through U�J�t�� � kT ln�t�t0�, where t0 is a macroscopic
time scale of the order of 1026 s (for a review, see [7]).
The collective creep theory thus corresponds to a nonloga-
rithmic decay of the current density J�t� ~ �ln�t�t0��21�m.
However, clear deviations from a logarithmic decay are
visible only after several time decades [4] and the mea-
surements rapidly become prohibitively time consuming
(the initial time for magnetic relaxation measurements is
of the order of 1 s, and a five decade measurement thus
lasts for one day). An alternative— and completely equiv-
alent —method to study the vortex dynamics is to measure
the frequency dependence of the vortex response to an al-
ternative field [14].

We will show here that, in �K, Ba�BiO3, the creep
mechanism is collective on both sides of the order-
disorder transition line. At high temperature and/or high
magnetic field, m decreases, in good agreement with the
plastic collective creep theory recently proposed by Kier-
feld et al. [13]. We suggest that this decrease becomes
visible only when the distance between dislocations in
the disordered phase becomes smaller than the creeping
© 2001 The American Physical Society 167002-1
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vortex-bundle size, and large m values can thus still be
observed above the fishtail peak at low temperature. Most
of the measurements were performed on high quality
�K, Ba�BiO3 single crystals grown by electrocrystalliza-
tion �Tc � 31.2 K�. Those particularly homogeneous
crystals present very sharp superconducting transitions
in both transport �DTc � 0.15 K� and ac susceptibility
�DTc � 0.2 K for hac , 0.01 G� measurements. The
high quality of the samples was futher confirmed by
magneto-optical images as well as specific heat mea-
surements. Its perfectly isotropic structure (i.e., cubic)
then makes this system particularly well adapted to
probe the various creeping models, avoiding any further
complication related to the anisotropy.

In order to extend the frequency range, the ac response
has been measured by means of two complementary
techniques. At low frequency (i.e., for 0.2 Hz , f ,

2 kHz for 0.5 T , Hdc , 5 T and even 0.03 Hz ,

f , 20 kHz for Hdc � 0.1 T), the broadband trans-
mittivity TH�hac, f, T� � �B�hac, f, T� 2 B�hac, f, T ¿

Tc����B�hac, f, T ¿ Tc� 2 B�hac, f, T ø Tc�� was de-
termined using a Hall probe. At higher frequency (i.e.,
1 , f , 60 kHz), the ac susceptibility x has been
deduced from the change in the inductance of a miniature
Cu secondary coil placed on the top of the sample. In
the non-Ohmic regime, the ac response is related to the
current density j through x�hac, v, T � �or, equivalently,
TH �hac, v, T�� � F�hac�j�v, T��, where F�x� depends
on the pinning mechanism [14], the sample geometry
and the flux creep exponent [15]. F�x� was determined
following the procedure proposed by Pasquini et al. [16]
[note that F�x� is frequency dependent and has thus
been determined for every frequency] and j�T , v� was
then deduced by inverting F�x� at fixed hac��5 G�:
j�T , v� � hac�F21�x�T , v��. A characteristic curve
obtained at Hdc � 0.1 T and T � 28 K is shown in
Fig. 1. As shown, the two sets of data nicely coincide
on the common frequency range. j�v� clearly deviates
from a simple logarithmic dependence at high frequency
and the solid line is a fit to the data using the collective
creep formula,

j�v, T� �
j0h

kT
U0

ln�v0�v�
i1�m

(1)

which yields to m � 5�2 as expected in the small
(vortex-)bundle regime [1] ( j0 and U0 are characteristic
current and energy scales, respectively; see below). Note
that the measurements were performed on a very large
frequency range: 1027 , v�v0 , 1 �v0 � 106 rad�s;
see below�, whereas classical dc relaxation measurements
would typically give access to a time window of the order
of 1029 , t0�t , 1025 (schematically represented by the
rectangle in Fig. 1). The ac measurements thus allow us
to extend the experimental window towards large v�v0
167002-2
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FIG. 1. Frequency dependence of the current density deduced
from ac susceptibility measurements using a Hall probe (closed
circles) and an induction technique (open triangles) at T �
28 K and Hdc � 0.1 T. The rectangle schematically repre-
sents the time window usually accessible through dc magnetic
relaxation measurements. The solid line is a fit to the data us-
ing Eq. (1) with m � 2.5. Inset: frequency dependence of the
current density deduced from ac susceptibility measurements at
Hdc � 2 T and T �K� � (from top to bottom) 24.5, 24.3, 24,
23.8, 23.5, 23, 22, and 21. The solid lines are fits to the data
using Eq. (1).

values for which the deviation from the logarithmic decay
becomes clearly visible.

The value of the m coefficient can also be directly
obtained by calculating the inverse creep rate S21�vn� �
�d ln j�d ln v�21 � ln�vn11

vn21
�� ln� jn11

jn21
�. As shown in

Fig. 2, at high temperature, S21 varies linearly with
ln�v0�v� with a negative slope 2m � 25�2. At low
temperature and low frequency we observed for all
magnetic fields a small deviation from the collective
creep behavior towards a frequency independent inverse
creeping rate (see dashed line in Fig. 2) which would
correspond to a logarithmic activation energy. For low
dc fields (i.e., 0.1 and 0.5 T) we did not observe any sig-
nificant change in the m coefficient with temperature [see
Fig. 3(a)]. This observation is consistent with our small
angle neutron scattering (SANS) experiments [17] which
have shown that the vortex solid is well ordered at low
temperature and low magnetic field. SANS experiments
also confirmed that the ordered phase transforms into a
disordered glass above some characteristic field B��T �
lying close to the fishtail peak. The transition line has then
been estimated from the J�H� curves, and the as-deduced
B��T � values have been reported in Fig. 3(b). Typical
j�v� curves obtained at Hdc � 2 T for several tempera-
tures in the vicinity of the transition line are shown in the
inset of Fig. 1. The corresponding m values (together with
those obtained for Hdc � 0.1, 0.5, and 5 T) are reported
in Fig. 3(a). As shown, at 2 T, m rapidly decreases at
high temperature. Indeed, as T becomes larger then the
order-disorder transition temperature T��H�, dislocations
167002-2
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FIG. 2. Inverse creep rate S21 � �d lnj�d lnv�21 versus
ln�v� at T � 28 K (closed circles) and T � 26 K (open
triangles) �Hdc � 0.1 T�. The solid line corresponds to the
linear variation expected in the collective creep theory (with
m � 5�2). Some deviation from this theory towards a fre-
quency independent creep rate is visible at low temperature
and low frequency (dashed line). Inset: current dependence of
the activation energy at Hdc � 2 T. The solid, dashed, and
dotted lines are, respectively, U � �J0�J�m, U � ln�J�J0�, and
U � �1 2 �J�J0�0.5� fits to the data.

proliferate into the samples and this decrease is in good
agreement with recent theoretical predictions [13] which
suggested that m � 10�21 , 2.5 for dislocation bundles
in the so-called random manifold regime. This regime
is equivalent to the vortex-bundle regimes in the ordered
phase, and a very similar value �m � 2�5� has been
predicted for very large dislocation bundle sizes (so-called
Bragg glass regime).

Fits to the j�v� data using Eq. (1) provide a very reason-
able characteristic frequency v0 � 106 107 rad�s (see,
for instance, Fig. 2 in which v0 corresponds to 1�S � 0).
This value can then be used to calculate the current de-
pendence of the creeping barrier U�J� � kT ln�v�v0�.
Typical curves for Hdc � 2 T are shown in the inset of
Fig. 2. As shown, the logarithmic barrier model (dashed
line) and the noncollective plastic barrier model (dotted
line) yield very poor fits to the data which, in contrast, can
be very well described by the collective creep theory (with
m � 1.3 and 1.9 for T � 24.5 and 24 K, respectively).
This unambiguously shows that the collective creep model
still has to be used in the regime where m decreases, as
previously suggested by Klein et al. [18].

Surprisingly, for Hdc � 5 T, i.e., well above the order-
disorder transition field, m still increases towards the 5�2
value as the temperature decreases. It has been suggested
by Kierfeld et al. [19] that the mean distance between
two dislocations in the glassy state is �Ra, where Ra

is the length on which typical vortex displacements are
of the order of the lattice spacing a0. On the other hand,
the dimension of the creeping vortex bundle is of the or-
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FIG. 3. (a) Creep exponent m as a function of T�Tirr [where
Tirr is the irreversibility temperature � Tc�1 2 �H�H0�0.7� with
H0 � 24 T and Tc � 31.2 K] at H � 5 T (open squares), 2 T
(closed squares), 0.5 T (open circles), and 0.1 T (closed circles)
in an optimally doped �K, Ba�BiO3 sample �Tc � 31.2 K�. The
hatched area corresponds to the dislocation creep limit and the
horizontal line corresponds to the elastic collective creep limit in
the small (vortex-)bundle regime. (b) Temperature dependence
of the fishtail position in the same sample. The horizontal lines
indicate the temperature range for which a constant m value
�5�2 has been measured. (c) Temperature dependence of the
renormalized inverse creeping rate �S0 � 5%� in a nonoptimally
doped sample �Tc � 23 K� at H�T� � 8, 7, 6, 4, 2, 0.5, and 0.2
(from bottom to top).

der of R� � j�j0�j�1�2 [ j0 being the depairing current
and j the coherence length �30 Å at low temperature in
�K, Ba�BiO3]. At low temperature (and not too high mag-
netic field) R� is of the order of a few times a0 for re-
alistic j0�j values �100 1000, whereas Ra � 10 100a0
[3]. The vortex-bundle size could hence be much smaller
than the distance between dislocations in some part of the
disordered phase, thus explaining why the creep can still
be described by the elastic model above the transition. As
T increases, Ra tends towards R�, and m finally decreases
at high temperature (as the creep becomes plastic).

As R� increases with field, whereas Ra decreases [3],
plastic collective creep is finally expected to be observed at
all temperatures for large magnetic fields. As pointed out
above, in the collective creep model, the inverse creep-
ing rate S21 is directly proportional to m. Figure 3(c)
shows the temperature dependence of S21 assuming that
m � 2.5 at low temperature and low field [i.e., taking a
very reasonable ln�v�v0� � 6.4 value for v � 213 Hz]
in a nonoptimally doped sample �Tc � 23 K�. As ex-
pected, at high field the creep is plasticlike on the entire
temperature range with m � 0.5 in excellent agreement
with the predictions of Kierfeld et al. [13]. Similar behav-
ior will probably show up in the optimally doped sample
but apparently for higher magnetic fields.

The last parameter in Eq. (1) is j0�U0

kT �1�m. j0U
1�m
0 can

then be deduced from the temperature dependence of the
current density at fixed frequency j0U

1�m
0 ~ jT1�m. The
167002-3
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FIG. 4. jT0.4��1 2 t�0.5 as a function of 1��1 2 t� (with t �
T�Tc). The solid lines are guides to the eye corresponding to the
expected variation for B . Bsb [Eq. (2)]. The dashed vertical
lines indicate the temperatures above which m starts to decrease
at 5 and 2 T (see Fig. 3).

small (vortex-)bundle creep regime can be reached by two
different ways, depending on the strength of the mag-
netic field: for B , Bsb this regime is observable only for
current densities smaller than some characteristic crossover
value jsb (j0 � jsb and U0 � Usb), whereas for Bsb ,
B , Blb [where Blb is the crossover field towards the
large (vortex-)bundle regime] this regime is expected to
be visible right below the critical current jc: j0 � jc and
U0 � Uc [1]. The temperature (and magnetic field) de-
pendence of j0U

1�m
0 is indeed very different in both cases.

For dTc pinning (i.e., pinning induced by fluctuations
in the critical temperature), one obtains jsbU

1�m
sb � �1 2

t�43�50 and

jcU1�m
c � �1 2 t�1�2 exp

µ
2a�B�
1 2 t

∂
(2)

for B , Bsb and B . Bsb, respectively (t � T�Tc and
a�B� is related to the magnetic field dependence of the
elastic moduli). As shown in Fig. 4, the experimental data
are in excellent agreement with Eq. (2) for 0.1 , Hdc ,
1 T. Note that, in contrast with the classical elastic theory,
a is only weakly magnetic field dependent in the vicinity
of the peak effect, probably reflecting some renormaliza-
tion of the elastic constants. As expected, for higher mag-
netic field, clear deviations from Eq. (2) can be observed as
soon as m starts to decrease (see dashed lines at 2 and 5 T).
As shown in [18], the temperature (and magnetic field) de-
pendence of the current density is then mainly governed
by m�T , H�.

In conclusion, we have shown that vortex dynamics
in �K, Ba�BiO3 is well described by the collective creep
theory in the ordered and disordered states. We sug-
gest that the creep mechanism remains elastic �m � 5�2�
167002-4
in the disordered phase as long as the size of the creeping
vortex bundle is smaller than the mean distance between
dislocations. At higher magnetic field and/or temperature,
m decreases, as predicted recently by Kierfeld et al. for
plastic collective creep [13].
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