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Targeted Energy Transfer through Discrete Breathers in Nonlinear Systems
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We propose a simple, novel mechanism for inducing highly selective and efficient energy transfer and
focusing in certain discrete nonlinear systems. Under a precise condition of nonlinear resonance, when
a specific amount of energy is injected as a discrete breather at a donor system, it can be transferred as a
discrete breather to another weakly coupled acceptor system. This general mechanism could be relevant
for energy transfer in bioenergetics and electron transfer in chemical reactions and could be used for
engineering functional materials and devices.
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One of the current most puzzling problems in physics
is understanding if a general mechanism is operative in
energy self-focusing and transport in biopolymers. In a
photosynthetic unit, for example, consisting of an aggre-
gate of many different chlorophyll molecules, light har-
vesting occurs through photon capture by the antennalike
function of the unit. Subsequently, energy self-focusing
takes place and light is transferred in the form of an exciton
coherently through a complex cascade of transfer within
and between pigment proteins, and upon reaching a pho-
tosynthetic unit the energy is released. This process lasts
less than a picosecond and it is very efficient (about 95%)
(see, e.g., [1]). Bioenergetics also requires that localized
energy deposition through, e.g., adenosine triphosphate
hydrolysis be transferred almost losslessly over a rela-
tively large distance enabling conformational biomolecular
changes and conversion into mechanical energy (biological
motors) (see, e.g., [2]). These and other molecular trans-
fer features led Davydov several years ago to propose that
solitons might be the coherent agents of energy transfer in
biological molecules [3,4]. While this transfer mechanism
is quite appealing, subsequent work by several groups has
shown several theoretical as well as practical weaknesses
to the soliton idea [4,5].

The aim of this Letter is to propose an alternative,
more general principle that could be applicable to a wide
range of physical, chemical, and biological phenomena and
which is naturally linked to the concept of discrete breather
(DB). DBs are spatially localized and temporally periodic
solutions of coupled nonlinear oscillator systems. The ex-
istence of DBs or intrinsic localized modes was already
empirically suggested long ago in chemical physics for the
study of vibrational states of molecules (local modes, see
relevant discussion and references in [4]). Its ubiquity in
physics emerged later, and progressively, when considering
the discrete aspects of nonlinear lattice problems (see [6,7]
for reviews). The DBs’ universal character was first recog-
nized in [8]. It was later proved [9] that they can be generic
exact solutions in the weak coupling (anticontinuous) limit
0031-9007�01�87(16)�165501(4)$15.00
when their frequency and its harmonics are outside the lin-
ear spectrum, thus making energy radiation by phonons im-
possible. Unlike solutions of integrable systems, DBs are
robust and can survive to model complexity. Among the
wealth of interesting properties discovered recently, exis-
tence proof and stability [6,9], modification of lattice ther-
modynamics [10], direct observation in coupled nonlinear
optical waveguides [11], arrays of Josephson junctions
[12], nonlinear [13] and magnetic [14] materials, and pos-
sibly myoglobin [15], point to the very important role that
DBs could play in a variety of contexts. Under very spe-
cial circumstances, DBs can move almost freely through
periodic systems, thus enabling coherent discrete energy
transfer [16]. However, translational invariance is not gen-
erally fulfilled in biomolecules. A detailed investigation
of random nonlinear lattices with discrete linear spectrum
showed that Anderson modes are replaced by DBs local-
ized at a given site with frequencies between forbidden
gaps generated by resonances with the linear modes [17].

In this Letter we demonstrate that it is possible to tune
the nonlinear lattice in such a way that a very selective,
efficient, targeted energy transfer (TET) between specific
sites results. Such an effect in a randomly chosen system
is a priori improbable but its possible occurrence and its
optimization in bioenergetics could be explained by long
adaptive processes during life evolution.

When two harmonic oscillators are resonant, any amount
of energy injected on one oscillator oscillates between
them with a frequency proportional to their coupling. This
picture is drastically changed when the oscillators are an-
harmonic because the frequencies depend on the amplitude
of oscillation. When a finite amount of energy is injected
into one of them, if by chance the initial frequency is reso-
nant with the other oscillator, a small fraction of energy
is transferred, but then the frequencies of both oscilla-
tors change so that the resonance condition is generally no
longer fulfilled and the transfer stops. However, there are
exceptional situations where the resonance persists during
the transfer, and complete transfer becomes possible. This
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happens for weak coupling where the selective TET occurs.
Here, we briefly outline the theory that produces the condi-
tions for TET. A detailed derivation as well as the solution
for two coupled oscillators are presented elsewhere [18].
We then treat the general case of TET between DBs of two
weakly coupled random nonlinear systems. These systems
could represent two independent molecules, two linked
parts of the same folded macromolecule, two weakly cou-
pled layers or clusters of atoms, etc. We present results
in a pedagogical model, but our methods are applicable to
complex models. We show that a specific amount of en-
ergy injected as a DB in the “donor” system (D) may be to-
tally transferred to the “acceptor” system (A) and oscillate
back and forth between D and A. The necessary condition
is that a well-defined “detuning function” is bounded by
a coupling function. Moreover, we show how extra reso-
nances make this transfer irreversible and suggest how TET
cascades can be realized.

The DB solutions on D and A are continuous fami-
lies parametrized through their frequency or action, IX

with X � D or X � A, obtained by the integration on
the loop representing the DB in phase space. The DB’s
energy EX � HX �IX� is a function of the action with fre-
quency vX � dHX�dIX . In the ideal situation for TET
the DB family is gapless (EX � 0 for IX � 0), i.e., no
resonances with linear modes are involved (in [19] there is
a detailed analysis of all bifurcations in general, with the
energy parametrized in frequency). We introduce a weak
coupling between D and A, which could physically repre-
sent contact interactions (hydrogen bonds, van der Waals
forces), Coulomb interactions, could be mediated by a sol-
vent, could come directly from the intermediate link of the
macromolecule, etc. We have searched for the conditions
for the complete transfer of the energy ET of a DB on D
with initial action IT to a DB on A. Since the coupling
between D and A is weak, this transfer is adiabatic. The
dynamics during this process is well described by DBs on
D and A, over a time scale long compared to the DB pe-
riod, tb � 2p�vb . The action of a loop evolving in the
phase space is time constant, i.e., IT � ID 1 IA. The to-
tal energy ET � HD 1 HA 1 HV is conserved and, since
the coupling energy HV is small, the condition of reso-
nance during the transfer is almost fulfilled,

HD�ID� 1 HA�IT 2 ID� � ET

, vD �
dHD

dID
�

dHA

dIA
� vA . (1)

The small coupling energy HV depends on the action on D
and A and on the corresponding conjugate angle variables,
uD, uA. With the assumptions of weak coupling and al-
most resonance, the total angle u0 � uD 1 uA varies fast
while the difference u � uD 2 uA varies slowly, so that
the u0 dependence can be averaged out, i.e., HV �ID, IA, u�.
Then, u essentially represents the difference between the
DB phases on D and A. We can split HV in two terms,
HV �ID , IA, u� � HV0�ID, IA� 1 V�ID, IA, u�, where HV 0
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is the average of HV over u while the average of V over
u is zero. The Hamiltonian of the system is now written as
H0�ID , IA� 1 V �ID , IA, u�, where H0�ID , IA� � HD�ID� 1
HA�IA� 1 HV 0�ID , IA�. A necessary and sufficient condi-
tion for TET is

minuV�ID, IA, u� , e�ID , IA� , maxuV �ID , IA, u� , (2)

where the detuning function e is defined as

e�ID, IA� � H0�ID, IA� 2 H0�IT , 0�

� H0�ID, IT 2 ID� 2 H0�IT , 0� . (3)

Function (3) characterizes the detuning between the
DBs on D and A during the transfer and is zero in the
beginning and at the end [e�IT , 0� � e�0, IT � � 0]. In
some sense it extends the concept of an energy barrier of
static excitations to DBs and may be positive or negative.
Condition (2) is valid for physically reasonable sinelike
dependence of V on u (since V is small, expansion to the
lowest order yields such a dependence with one min and
one max and two zeros per period). It shows that TET oc-
curs even when Eq. (1) is not strictly satisfied, as long as
e is bounded by V .

As an example, we consider here discrete nonlinear
Schrödinger (DNLS) models which also describe Klein-
Gordon chains in some limits and, thus, are relevant to
both vibrations and quantum excitations. Moreover, the
self-consistent DB calculations are greatly simplified in
DNLS since the time dependence is removed (see [19] for
Newton-method-based DB calculations in random mod-
els). The Hamiltonian for D and A is

HX �
X

i

Ω
2EX,ijcX,i j

2 2
1
2

sX jcX,ij
4

2 C�cX,ic
�
X,i11 1 c�

X,icX,i11�
æ

, (4)

where EX,i are the randomly chosen on-site energies, cX,i

are the amplitudes on sites i, X � D or A, C is the
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FIG. 1. (a) Energy EX versus action IX of the DBs on the
uncoupled D and A systems. In this example, each system
consists of ten sites with ED ,i � 0.265, 0.346, 0.928, 0.542,
0.165, 0.692, 0.863, 0.097, 0.412, 0.700 and EA,i � 2.655,
2.931, 2.083, 2.748, 2.109, 2.578, 2.308, 2.489, 2.851, 2.222.
The DBs are localized on site i � 3 of D and A. The intra-
molecular coupling is C � 0.05. The intersection (zoom) is at
IT � 1.149297647, ET � 21.730521602. (b) The detuning e
and coupling V functions versus ID are plotted for intermolecu-
lar coupling l � 0.001, 0.00075, and 0.0005 (solid, dashed, and
long-dashed lines, respectively).
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FIG. 2. (a) �ED 2 EA��ET and (b) �ID 2 IA��IT versus time
for the system of Fig. 1. The initial condition is the DB on
D at the intersection of the curves in Fig. 1(a) with frequency
vb � 2.0781937765. The intermolecular coupling is l �
0.001, 0.00075, and 0.0005 (solid, dashed, and long-dashed
lines, respectively). The time unit is the period tb of the initial
DB on D.

“intramolecular” coupling constant (between the “atoms”
of the same D or A “molecule”), and, in our examples here,
sD � 1 while sA � 21. The opposite sign of the non-
linear terms in Eq. (4) makes D a system of hard anhar-
monic oscillators (the amplitude of oscillation increases
with frequency) and A a system of soft oscillators. A
simple “intermolecular” coupling, as explained above, is

HV � 2l
X

i

�cA,ic
�
D,i 1 c�

A,icD,i� (5)

so that the equations of motion are

i �cX,i 1 sXjcX,i j
2cX,i 1 C�cX,i11 1 cX,i21� 1

EX,icX,i 1 lcY ,i � 0 ,
(6)

where �X, Y� � �D,A� or �A, D�. In DNLS models, the
action is the norm, i.e., IX �

P
i c

�
X,icX,i .

Figure 1(a) plots the energy ED, EA given by Eq. (4) of
DBs on D, A as a function of the action, ID, IA, respec-
tively. The DB solutions localized on sites d � 3 and
a � 3 are calculated by continuation [19]. The on-site
energies were randomly chosen in a certain interval.
The possibility of ideal TET was detected between the
DB on sites d and a, for which ED,d . ED,i�i fi d�,
EA,a , EA,i �i fi a� and 0 , ED,i , 1, 2 , EA,i , 3,
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FIG. 3. The ratio of the energy and action transferred from D to A, EAmax�ET and IAmax�IT (solid circles connected by a solid
line, empty circles connected by a dashed line, respectively), as a function of ET in (a) and IT in (b). The DB is initially localized
on site d of D.
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so that there is a large domain of existence in the gap
with no bifurcations for these DBs in continuation of the
linear modes ED,3 and EA,3. The point of intersection
(which is better presented in the inset) is where ID �
IA � IT , i.e., where the TET is produced, if condition (2)
is satisfied. In the example of Fig. 1, IT � 1.149297647,
ET � 21.730521602.

Figure 1(b) plots the detuning function [Eq. (3)] and the
coupling function, which in this DNLS model is given by
Eq. (5), i.e., V � HV , for three different values of the in-
termolecular coupling l � 0.001, 0.00075, 0.0005. Note
that l is 2 orders of magnitude less than the intramolecu-
lar coupling C � 0.05. According to (2), complete TET
should occur for l � 0.001 and 0.00075.

This is depicted in Fig. 2, where the time evolution of
the ratio of the energy difference between D and A over
the total energy, rE � �ED 2 EA��ET , is plotted in (a),
and similarly for the action, rI � �ID 2 IA��IT , in (b),
for the system in Fig. 1. The initial condition is the DB
on D at the intersection of the curves of Fig. 1(a). The
TET is practically complete for l � 0.001 (solid line) and
l � 0.00075 (dashed line), with the ratios oscillating be-
tween 1 (when ED � ET , ID � IT , EA � 0, IA � 0) and
21 (when ED � 0, ID � 0, EA � ET , IA � IT ). For l �
0.0005 (long-dashed line) there is a partial transfer at rE �
20.472, rI � 20.300, and the ratio of the maximum
EA, IA over ET , IT is EAmax�ET � 0.736, IAmax�IT �
0.650, respectively. These results are expected from the
curves in Fig. 1(b). Although complete TET occurs only
when condition (2) is satisfied, we observe that there is a
substantial TET even when the detuning function is not
completely bounded by the coupling. This is expected
since TET proceeds for the values of ID for which
jV j . jej and stops when jV j , jej.

This TET is very selective, as Fig. 3 demonstrates,
where the ratio of energy and action transferred from D
to A is plotted, EAmax�ET , IAmax�IT , as a function of ET

in (a) and IT in (b). It is clear that TET rapidly vanishes
as the energy of the initial DB on D moves away from
the intersection of ED and EA in Fig. 1(a). It becomes
possible only in a narrow window in ET or IT . The
165501-3
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FIG. 4. (a) Energies ED , EA , and EP and (b) actions ID , IA,
and IP versus time (solid, dashed, and long-dashed lines, re-
spectively) for the system of Figs. 1 and 2 with l � 0.001, but
coupled to a linear system P with on-site energies EP,i � 0.933.

example presented here is quite general since, besides the
choice of DB sites d, a and the fact that D is hard and A
is soft, it does not contain other built-in elements. Still,
TET occurs for very weak intermolecular coupling. One
can fine-tune the model parameters (linear and nonlinear
terms) in order to obtain TET for even weaker coupling
and an even narrower window.

In a real physical or biological system the D-A pair may
be interacting with additional degrees of freedom. A di-
rect consequence of this interaction is that, under appropri-
ate conditions, TET becomes irreversible. While the exact
resonance condition is kept, most D energy is transferred
to A; however, as a result of energy loss and of the high
selectivity of TET, the resonance condition can be broken,
making a significant energy return to D impossible. As a
result, irreversible targeting occurs with almost complete
energy transfer. The situation depicted in Fig. 4 represents
such a case whereby the pair is coupled to a third linear
system P through the same coupling constant l � 0.001.
The initial condition is again the DB on D at the inter-
section of Fig. 1(a). Indeed, such transfer occurs very effi-
ciently (EAmax � 0.96) and subsequently, as a result of the
interaction with P, most energy EA remains localized on
A, a small fraction is absorbed by the phonons of P, and a
small part returns to D.

Whenever resonance condition (1) is broken at the end of
the transfer, TET becomes irreversible. This may happen
because of resonances in the gap, when both D and A
are coupled to a phonon band, to dissipative systems with
noise, etc. This is crucial in real situations, where the
system is surrounded by a thermalized medium. One can
design efficient transfer and funneling by cascades through
networks of D-A systems, such as in chlorophyll, which
could also be important both from a materials science and
a biotechnology point of view for distant coherent energy
transfer.

We illustrated TET in a simple model example but the
general methodology for detecting through condition (2)
the possibility for TET applies to more complex models
and, possibly, to ab initio calculations combined with self-
consistent DB calculation methods. The phenomenon of
TET that we introduced is very general and relies on non-
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linearity and discreteness on one side, which localize en-
ergy in the form of hard and soft DBs, and judicious
disorder on the other, which exploits specific nonlinear
resonances. It can be applied to vibrational, electronic,
polaronic, excitonic, etc., transfers, and as a result it could
help resolve questions that range from bioenergetics to
dynamics of chemical reactions, synthetic and biological
catalysts, etc. Future work should connect the present ap-
proach to standard exciton transport theories. TET can
also be used as a guiding principle for the design of nano-
devices with specific energy transfer features.
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