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Extracting Symbolic Cycles from Turbulent Fluctuation Data
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The method for extracting symbolic cycles from the fluctuation data is presented. For the example
of the Lorenz model we demonstrate that approximately the same complex structure of cycles can be
computed using time records of different variables. Our method has been applied to the analysis of
turbulent fluctuations measured in water flow in a pipe. Even though the fluctuations in the bulk of the
water and near the wall of the pipe appear to be very different, the majority of the most stable cycles

extracted from the data are identical.

DOI: 10.1103/PhysRevLett.87.164501

The purpose of this paper is to demonstrate how to ex-
tract from chaotic signals and turbulent fluctuation data the
information related to the structure of unstable periodic or-
bits. There already exist algorithms for extracting periodic
orbits from chaotic orbits for low-dimensional dynamical
systems [1]. The advantage of our method is that it can
be applied to the analysis of fluctuations measured experi-
mentally in highly developed turbulence.

The Fourier transform is often used for the analysis
of chaotic signals and turbulent fluctuations. It is useful
for determining the coherent parts of fluctuating signals
(which correspond to narrow peaks in the power spec-
trum) but it is not particularly informative for the analysis
of the incoherent part of the signal (which corresponds
to broad portions of the power spectrum). Consider the
example of Fourier power spectra Fy(w) and F,(w) pre-
sented in Fig. 1 [2,3]. Here signals X(r) and Z(¢) are
generated by the Lorenz model [2] and are related to
fluid velocity and temperature fluctuations in a simplified
model of Bénard thermal convection. F,(w) and F,(w)
look quite different because the Fourier power spectrum is
not an invariant characteristic of dynamics. On the other
hand, the symbolic cycle distribution (SCD) introduced in
this paper is approximately invariant [see Figs. 2(a) and
2(b)].

We will describe our method of computation for the ex-
ample of the Lorenz model, and then apply it to the analysis
of turbulent fluctuations measured experimentally in water
flow in a pipe at Mason Laboratory, Yale University.

All computations below are defined for the X(¢) vari-
able; exactly the same computations are done for the Z(r)
variable.

We begin with time discretization of our signals:

X, = X(tg + n7). (1)

Here n = 0,1,2,...,N. For the computations presented
in Figs. 2(a) and 2(b), 7 = 0.1 and N = 2 X 10°. The
criteria for choosing the appropriate 7 and N are discussed
below.

The time series X, and Z, are substituted by the sym-
bolic series S(X,,) and S(Z,). The symbolic dynamics used
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for these computations is defined as

_]0, X, — X1 =0
SX) = {1, Xy = Xy <0 @)

Such simple symbolic dynamics is adequate only for suf-
ficiently small 7 (see below).

The symbolic time series are partitioned into sequences
of a given length L (L = 7 in the example below).
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FIG. 1. Fourier power spectra F,(w) and F,(w) computed for

X(r) and Z(r) signals generated from the Lorenz model.
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FIG. 2. (a) Stability parameter 1/y,(p) of the most stable

cycles as a function of period computed for the signals X (r) and
Z(t) for the Lorenz model: a = 10, b = 8/3,r = 25,7 = 0.1,
L =56,and N = 2 X 10°. (b) Maximum number of cycles as
a function of period J(p) computed for the X(¢) and Z(z) sig-
nals for the same parameters.

All sequences are identified uniquely by integers € de-
fined as

L
€S, 3) = D 2k, 3)
i=1

Here we use the following notation for sequences of the
length L,{S,}2: Sp+1,Sn+25-- -5 Sn+r-
We compute an information entropy defined as [4]

E(1,L,N) = = > P¢lnP;. “4)
€

Here Py is the probability of finding a particular sequence
€, that is, the number of times N, this sequence is found
in the symbolic time series, divided by the number of
all sequences (N — L) = N. We find computationally
that E(t — 0,L,N) — 0 and, in order to use symbolic
dynamics with only two symbols as defined by Eq. (2),
we need to choose 7 small enough so that

E < LIn2. (5)

Note that 7 should not be too small because then we have
to deal with very long periods (see below). We also found
computationally that entropy is a monotonically increasing
function of L and that E(7,L — o, N) — InN and most
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occupied “¢” states have Ny = 1. The symbolic kinetic
equation, [(7) and (8)] based on a statistical description of
dynamics, is valid if N¢ > 1, thus L should be not too
large so that

expE < N. 6)

Relations between the probabilities P, are given by the
symbolic kinetic equation [6]:

Popsr = D Peal(€ — £'), (7)
€

ST —¢)=1. (8)

el

Here I'(€ — ¢') is the probability of a transition from the
state € to the state €/ at one time step; it can be easily
computed [6]. The sums in Egs. (7) and (8) involve no
more than two terms because we have only two symbols.
The structure of the system of equations (7) and (8) can be
represented graphically as a network diagram. A simple
example of a network diagram is presented in Fig. 3 for
L = 6 [6]. The numbers on this diagram correspond to the
€ states while the arrows indicate the transitions between
different states in one time step. This network diagram
is taken from Ref. [6] just for the purpose of explaining
the notion of symbolic cycles. Actual network diagrams
which appear in our computations are so large that it is
impossible to plot them.

Symbolic cycles which are related to unstable periodic
orbits can be identified in the network diagram as closed
loops. We will call the number of transitions or time
shifts on the loop a period of the cycle “p.” The simplest
cycles correspond to the case L = p: in this case at every
time shift a new symbolic state can be obtained from the
old one by cyclic permutations of the sequence which
defines the old symbolic state. For the example given in
Fig. 3 there are two such cycles with p = L = 6. These
cycles include the following transitions: (i) 29(011101) —
58(111010)—53(110101)—43(101011)—23(010111)—
46(101110) — 29. (i) 59(111011) — 55(110111) —
47(101111)—31(011111)—62(111110)—61(111101)—
59. There are also many cycles with p < L. Consider

47

59

29 >

46
\:

23

FIG. 3. Example of a network diagram for L = 6 [5].
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FIG. 4. Turbulent velocity fluctuations in the bulk of the water and wall shear simultaneously measured at the wall of the pipe [7].

first the case when pm = L; the permutation rules are
still cyclic in this case. For the example given in Fig. 3
there are two such cycles with p = 2 [42(101010) —
21(010101) — 42] and another with period p =1
[63(111111) — 63]. For a more general case when L is
not a multiple of p, we then have to cyclically permute
every pth symbol counting from the end. For the example
given in Fig. 3 there is a cycle of period p = 5 with
the following transitions: 61(111101) — 59(111011) —
55(110111) — 47(101111) — 30(011110) — 61. There
is also a cycle of period p = 4 with the following
transitions: 46(101110) — 29(011101) — 59(111011) —
55(110111) — 46. Cycles with p > L will not be con-
sidered because the permutation rules for them could not
be defined uniquely.

We can define the following stability parameter for a
cycle:

p
Vi(p) = —pl—T S 1nl'{e()) — €,[mod, (i + DJ. ()
=

Here the subscript j = 1,2,...,J(p) enumerates different
cycles, while mod, (i + 1) = 2,3,..., p, 1. Larger values
of vy correspond to more unstable cycles. Do not confuse
v;(p) with Lyapunov numbers. If we consider the ex-
ample of a stable periodic orbit, then the Lyapunov number
is negative but the corresponding symbolic cycle will have
y(p) = 0. We order different cycles of the same period
in the following way: 0 < y; < y,+1, yi = miny,(p).
Figure 2(a) plots the results of computations of the sta-
bility parameter y(p) for most stable cycles as a function
of period p for the X () and Z () variables, which are not
correlated in time. The points where 1/y; = 0 correspond
to the periods for which cycles do not exist at all. We
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FIG. 5. (a) Stability parameter 1/y,(p) of the most stable
cycles as a function of period computed for turbulent veloc-
ity and wall-shear fluctuations 7 = 2 X 107* sec, L = 48, and
N =5 X 10°. (b) Maximum number of cycles as a function of
period J(p) computed for the same signals; the parameters are
the same.
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chose L = 56 for this computation. The computations of
the maximum number of cycles for the same period J(p)
are presented in Fig. 2(b). It is clear from these results that
the symbolic cycle distribution is approximately invariant.

Now we present the application of our method for the
analysis of turbulent fluctuations measured in water flow
in a pipe [7].

The flow of water occurs in a pipe of 30 cm diameter,
30 m long, and the flow recirculates. The flow Reynolds
number based on the pipe diameter is 300 000. The pipe is
situated in Mason Laboratory at Yale University. Measure-
ments were made by R. Bhiladvala [7]. One measurement
was made at the pipe wall. This was a time signal of the
shear stress fluctuation; one can show that this is the same
as the velocity fluctuation very close to the wall. The other
measurement was the velocity fluctuation away from the
wall, right above the place where the shear stress was mea-
sured at the distance 3 cm above the wall stress probe. The
time series for fluid velocity fluctuations and wall-shear si-
multaneously measured are presented in Fig. 4. The fre-
quency of the digitizer was 10 kHz. There is practically no
correlation between these two signals. These fluctuations
look so different that one would assume that the nature of
the turbulence at the wall and in the bulk of fluid is dif-
ferent. But the symbolic cycle distribution extracted from
these data and presented in Figs. 5(a) and 5(b) shows that
the majority of the most stable cycles are the same at the
bulk of the water and at the wall. For these computations
weused 7 =2 X 107* sec, L =48, and N = 5 X 10°.
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The method presented in this paper was also applied to
the analysis of turbulent plasma fluctuations measured in
the tokamak. The results will be published elsewhere.

Thus we conclude that the method of SCD could be ap-
plied to the analysis of turbulence fluctuation data mea-
sured experimentally.
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