VOLUME 87, NUMBER 16

PHYSICAL REVIEW LETTERS

15 OcTOBER 2001

Thermodynamic Formalism of the Harmonic Measure of Diffusion
Limited Aggregates: Phase Transition

Benny Davidovitch, ! Mogens H. Jensen,? Anders Levermann,! Joachim Mathiesen,? and Itamar Procaccia

1

' Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

2The Niels Bohr Institute, Blegdamsvej, Copenhagen, Denmark
(Received 2 July 2001; published 2 October 2001)

We study the nature of the phase transition in the multifractal formalism of the harmonic measure
of diffusion limited aggregates. Contrary to previous work that relied on random walk simulations or
ad hoc models to estimate the low probability events of deep fjord penetration, we employ the method
of iterated conformal maps to obtain an accurate computation of the probability of the rarest events. We
resolve probabilities as small as 107%. We show that the generalized dimensions D, are infinite for
q < gq*, where ¢* = —0.18 = 0.04. In the language of f(«) this means that @, is finite. We present

a converged f(a) curve.
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Since its introduction in 1981 [1] the model of diffusion
limited aggregation (DLA) has posed a challenge to our un-
derstanding of fractal and multifractal phenomena. DLA
is a paradigmatic example for the spontaneous generation
of fractal objects by simple dynamical rules (being gener-
ated by random walkers); its harmonic measure, which is
the probability for a random walker to hit the surface, had
been one of the first studied examples of multifractal mea-
sures outside the realm of ergodic measures in dynamical
systems [2]. The multifractal properties stem from the ex-
treme contrast between the probability to hit the tips of the
DLA compared with penetrating the fjords.

The multifractal properties of the harmonic measure of
the DLA are conveniently studied in the context of the gen-
eralized dimensions D, and the associated f(a) function
[3.,4]. The simplest definition of the generalized dimen-
sions is in terms of a uniform covering of the boundary
of a DLA cluster with boxes of size £ and measuring the
probability for a random walker coming from infinity to
hit a piece of boundary which belongs to the ith box. De-
noting this probability by P;(€), one considers [3]

_ 1 logd, P(6)
bq = }flir(l) g — 1 logf

ey

It is well known by now that the existence of an interest-
ing spectrum of values D, is related to the probabilities
P;(€) having a spectrum of “singularities” in the sense
that P;(€) ~ €* with « taking on values from a range
Omin = @ = amx. The frequency of observation of a par-
ticular value of « is determined by the function f(a) where
[with 7(¢) = (¢ — 1)Dy]

fla) = agq(a) — 7(q(a)), 97(q) _

dq

The understanding of the multifractal properties and the
associated f(a) spectrum of DLA clusters have been a
long-standing issue. Of particular interest are the values
of the minimal and maximal values, o, and apax, Ire-

alg). (2
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lating to the largest and smallest growth probabilities, re-
spectively. As a DLA cluster grows the large branches
screen the deep fjords more and more and the probability
for a random walker to get into these fjords (say around
the seed of the cluster) becomes smaller and smaller. A
small growth probability corresponds to a large value of «.
Previous literature hardly agrees about the actual value of
amax. Ensemble averages of the harmonic measure of DLA
clusters indicated a rather large value of amax ~ 8 [5]. In
subsequent experiments on non-Newtonian fluids [6] and
on viscous fingers [7], similar large values of ap,x were
also observed. These numerical and experimental indica-
tions of a very large value of amax led to a conjecture that,
in the limit of a large, self-similar cluster some fjords will
be exponentially screened and thus causing ap,x — % [8].

If indeed ayax — %, this can be interpreted as a phase
transition [9] (nonanalyticity) in the g dependence of D,
at a value of ¢ satisfying ¢ = 0. If the transition takes
place for a value ¢ < 0, then amay is finite. Lee and Stan-
ley [10] proposed that ay,., diverges like R?/InR with
R being the radius of the cluster. Schwarzer et al. [11]
proposed that am.x diverges only logarithmically in the
number of added particles. Blumenfeld and Aharony [12]
proposed that channel-shaped fjords are important and pro-
posed that ap,x ~ 11::1_1\4’ where M is the mass of the clus-
ter; Harris and Cohen [13], on the other hand, argued that
straight channels might be so rare that they do not make
a noticeable contribution, and ap,y is finite, in agreement
with Ball and Blumenfeld who proposed [14] that a
is bounded. Obviously, the issue was not quite settled.
The difficulty is that it is very hard to estimate the small-

est growth probabilities using models or direct numerical
simulations.

In this Letter we use the method of iterated conformal
maps to offer an accurate determination of the probability
for the rarest events. We propose that using this method
we can settle the issue in a conclusive way. Our result
is that ay,y exists and the phase transition occurs at a ¢
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value that is slightly negative. In this method one studies
DLA by constructing & (w) which conformally maps the
exterior of the unit circle e’? in the mathematical w plane
onto the complement of the (simply connected) cluster
of n particles in the physical z plane [15-17]. The unit
circle is mapped onto the boundary of the cluster. The
map ®"(w) is made from compositions of elementary

maps .0,
DM (w) = @ V[ 4. (W], 3)

where the elementary map ¢, transforms the unit circle
to a circle with a semicircular “bump” of linear size
\/X around the point w = ¢'?. We use below the same
map ¢, that was employed in [15-19]. With this map
®"(w) adds on a semicircular new bump to the image
of the unit circle under ®”~Y(w). The bumps in the
z plane simulate the accreted particles in the physical
space formulation of the growth process. Since we want
to have fixed size bumps in the physical space, say of fixed
area Ag, we choose in the nth step

_ Ao
- |(I)(n—1)’(ei0n) 2 4)

The recursive dynamics can be represented as iterations of
the map ¢, 9,(w),

q)(n)(w) = ¢/\1,91 o ¢/\2,92 o-.-.-

An

° dr0,(@). ()

It had been demonstrated before that this method repre-
sents DLA accurately, providing many analytic insights
that are not available otherwise [18,19]. For our purposes
here we quote a result established in [16], which is

2
(A1) = (1/277)[ 29(0) do ~ 24D /D )
0

To compute 7(g) we rewrite this average as

+1/2
ap = [ as|E e = [ X2

where s is the arclength of the physical boundary of the
cluster. In the last equality we used the fact that |d6/ds| =
VAn/Ag. We stress at this point that in order to mea-
sure these moments for ¢ = 0 we must go into arclength
representation.

To make this crucial point clear we discuss briefly what
happens if one attempts to compute the moments from
the definition (6). Having at hand the conformal map
® (%), one can choose randomly as many points on the
unit circle [0, 277 ] as one wishes, obtain as many (accurate)
values of A,, and try to compute the integral as a finite sum.
The problem is of course that using such an approach the
fjords are not resolved. To see this we show in Fig. 1(a)
the region of a typical cluster of 50000 particles that is
being visited by a random search on the unit circle. As
in direct simulations using random walks, the rarest events
are not probed, and no serious conclusion regarding the
phase transition is possible.
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FIG. 1. (a) The boundary of the cluster probed by a random
search with respect to the harmonic measure. (b) The boundary
of the cluster probed by the present method.

Another method that cannot work is to try to compute
by sampling on the arclength in a naive way. The reason
is that the inverse map [®]~!(s) cannot resolve 6 val-
ues that belong to deep fjords. As the growth proceeds,
reparametrization squeezes the 6 values that map to fjords
into minute intervals, below the computer numerical reso-
lution. To compute the values of A, (s) effectively we must
use the full power of our iterated conformal dynamics, car-
rying the history with us, to iterate forward and backward
at will to resolve accurately the 6, A values of any given
particle on the fully grown cluster.

To do this we recognize that every time we grow a semi-
circular bump we generate two new branch cuts in the
map ®". We find the position on the boundary between
every two branch cuts and there compute the value of A,,.
The first step in our algorithm is to generate the location
of these points intermediate to the branch cuts [20]. Each
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branch cut has a preimage on the unit circle which will be
indexed with three indices, w;(,(;) = exp[ief,(f)]. The in-
dex j represents the generation when the branch cut was
created (i.e., when the jth particle was grown). The in-
dex ¢ stands for the generation at which the analysis is
being done (i.e., when the cluster has € particles). The in-
dex k represents the position of the branch cut along the
arclength, and it is a function of the generation €. Note
that since bumps may overlap during growth, branch cuts
are then covered, and therefore the maximal k, k. = 2€.
After each iteration the preimage of each branch cut moves
on the unit circle, but its physical position remains. This
leads to the equation that relates the indices of a still ex-
posed branch cut that was created at generation j to a later
generation n:

(n) - - k(j)
q)(n)(wj,nn) = q)(")[¢A 10 ©..-0 ¢A,11,0,-+1(Wj,j] )]

n>Yn

— V(Wi ®)

Note that the sorting indices k() are not simply related
to k(n) and need to be tracked as follows. Suppose that

. k(n—1) . . .
the list wj,(,f_l) is available. In the nth generation we
choose randomly a new 6, and find two new branch cuts

which on the unit circle are at angles 6. If one (or very
rarely more) branch cut of the updated list ¢, jgn (wf’(:__ 11))

is covered, it is eliminated from the list, and together with

the sorted new pair we make the list w;(,(nn). Having a cluster
of n particles we now consider all neighboring pairs of

. k(n) k(n)+1
preimages w;,, and wy,,  , that very well may have been
created at two different generations j and J. The larger of
these indices (J without loss of generality) determines the

generation of the intermediate position at which we want

to compute the field. We want to find the preimage uljf;l)

of this midpoint on the unit circle to compute Ay, there
accurately. Using definition (8) we find the preimage

/2. ©

In Fig. 1(b) we show, for the same cluster of 50 000, the
map OV )(ulj,(j)) with k(n) running between 1 and kpy,
with J being the corresponding generation of creation of
the midpoint. We see that now all the particles are probed,
and every single value of A (,) can be computed. However,
to compute these Ay (,) accurately, we define [in analogy to
Eq. (8)] for every J < m = n,

winl = Bile, o 0 B0 W) (0)

m>Ym

k(n) k(J) k()+1
arg(uyy) = [arg(w;j ) + arg(wy;

Finally Ag(,) is computed from the definition (4) with

k(n)

q)(n)/(uj ’ k(n) k(n)

= ¢§L,l,9n(uj,n ) T ¢IA,+,,9_,H (MJ,J+1

X D)), an

This calculation is optimally accurate since we avoid as
much as possible the effects of the rapid shrinking of low
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probability regions on the unit circle. Each derivative in
(11) is computed using information from a generation in
which points on the unit circle are optimally resolved.

The integral (7) is then estimated as the finite sum
VA0 Yk(n) Ai(n)- We should stress that for clusters of the
order of 30000 particles we already compute, using this
algorithm, Ay(,) values of the order of 10770, To find the
equivalent small probabilities using random walks would
require about 10° attempts to see them just once. This
is of course impossible, explaining the lasting confusion
about the issue of the phase transition in this problem. This
also means that all the f(a) curves that were computed be-
fore [5,21] did not converge. Note that in our calculation
the small values of Ay, are obtained from multiplications
rather than additions and therefore can be trusted.
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FIG. 2. (a) The calculated function 7(g) for clusters of n par-
ticles, with n = 10000, 15000, 25000, and 30000. (b) The
second derivative of 7(g) with respect to q.
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FIG. 3. The calculated function f(«) using 7(g) calculated

from a cluster with n = 30000 particles. This f(a) is almost
indistinguishable from the one computed with n = 25000 par-
ticles. We propose that this function is well converged. The
black dot denotes where the curve ends, being tangent to the
line with slope —0.18.

Having the accurate values Ay, we can now compute
the moments (6). Since the scaling form on the right-hand
side includes unknown coefficients, we compute the values
of 7(g) by dividing (A1) by (A3), estimating

log(A%) — log(A)

7(q) = =D p———
ogn — logn

(12)

Results for 7(g) for increasing values of n and 7 are shown
in Fig. 2(a). It is seen that the value of 7(g) appears
to grow without bound for ¢ negative. The existence of
a phase transition is, however, best indicated by measur-
ing the derivatives of 7(g) with respect to ¢g. In Fig. 2(b)
we show the second derivative, indicating a phase transi-
tion at a value of ¢ that recedes away from ¢ = 0 when
n increases. Because of the great accuracy of our mea-
surement of A we can estimate already with clusters as
small as 20—-30000 the g value of the phase transition to
g = —0.18 = 0.04. The fact that this value is very close
to the converged value can be seen from the f(a) curve
which is plotted in Fig. 3. A test of convergence is that
the slope of this function where it becomes essentially lin-
ear must agree with the ¢ value of the phase transition.
The straight line shown in Fig. 3 has the slope of —0.18,
and it indeed approximates very accurately the slope of the
f(a) curve where it ends and stops being analytic. The
reader should also note that the peak of the curve agrees
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with D = 1.71, as well as the fact that 7(3) is also D as
expected in this problem. The value of ap.x is close to
20, which is higher than anything predicted before. It is
nevertheless finite. We believe that this function is well
converged, in contradistinction with past calculations.
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