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Angular Focusing, Squeezing, and Rainbow Formation in a Strongly Driven Quantum Rotor
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Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-
varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular
distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rain-
bowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a
specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging
from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold
atoms by a standing light wave.
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The driven rotor is a standard model in classical and
quantum nonlinear dynamics studies [1]. Increasing
interest in the problem has arisen because of a recent atom
optics realization of the quantum d-kicked rotor [2], and
novel experiments on molecule orientation (alignment)
by strong laser fields [3–6]. A strong enough laser field
creates the so-called pendular molecular states [7] that are
hybrids of field-free rotor eigenstates. By adiabatically
turning on the laser field, it is possible to trap a molecule
in the ground pendular state, thus leading to molecular
alignment. The only way to reach a considerable degree
of alignment in this approach is by increasing the intensity
of the field. However, many applications may require
only a transient molecular alignment (orientation), when
the molecular angular distribution becomes extremely
squeezed at some predetermined moment of time. It is
well known that a physically related problem of squeezed
states generation in a harmonic system may be solved by
a proper time modulation of the driving force (parametric
resonance excitation). Behavior of a rotor in general,
strong, time-varying fields is a much less-studied problem,
although it is understood that the long-persisting beats
in the molecular angular distribution may be induced by
short laser pulses [8–14].

In the present paper, we analyze generic features in the
dynamics of a quantum rotor (molecule) driven by strong
pulses, and present a strategy for efficient squeezing of
the rotor angular distribution by a sequence of pulses of
moderate intensity.

We start with a generic Hamiltonian:

Ĥ �
L̂2

2I
1 V �u, t� , (1)

where L̂ is the angular momentum operator, and I is the
momentum of inertia of the rotor. For a linear molecule
having a permanent dipole moment m, and driven by a
linearly polarized field, the interaction potential is

V�u, t� � 2mE �t� cos�u� , (2)
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where E �t� is the field amplitude (e.g., of a half-cycle
pulse), and u is the polar angle between the molecular axis
and the field direction. In the absence of interaction with a
permanent dipole moment, the external field couples with
the induced molecular polarization. For nonresonant laser
fields, this interaction, averaged over fast optical oscilla-
tions, is (see, e.g., [7,15])

V �u, t� � 21�4E 2�t� ��ak 2 a�� cos2�u� 1 a�� . (3)

Here ak and a� are the components of the polarizabil-
ity, parallel and perpendicular to the molecular axis, and
E �t� is the envelope of the laser pulse. Although the
two above forms of V�u, t� may lead to different physical
consequences (i.e., orientation vs alignment), the effects
we will present are more or less insensitive to the choice
of interaction. Therefore, we chose V�u, t� from Eq. (2)
for the following presentation. Moreover, for the sake of
clarity, we will focus mainly on the simplest model of a
two-dimensional rigid rotor, which contains almost all of
the physics, and we will only briefly mention the addi-
tional effects that appear in 3D. The detailed study of the
three-dimensional case will be published elsewhere [16].
It is worth mentioning that 2D rotor is a standard model in
nonlinear dynamics studies, and it also describes behavior
of cold atoms trapped in pulsed optical lattices [2].

By introducing dimensionless time t � th̄�I, and inter-
action strength ´ � mE �t�I�h̄2, the Hamiltonian can be
written as

Ĥ � 2
1
2

≠2

≠u2 2 ´�t� cos�u� .

The wave function of the system can be expanded in the
eigenfunctions of a free rotor

C�u, t� �
1

p
2p

1X̀
n�2`

cn�t�einu .

In the absence of the field, the wave function takes the form

C�u, t � �
1

p
2p

1X̀
n�2`

cn�0�e2in2t�21inu . (4)
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Despite a simple form of Eq. (4), the wave function ex-
hibits extremely rich space-time dynamics. In particular,
it shows periodic behavior in time with the period Trev �
4p (full revival) and a number of fractional revivals at
t � p�sTrev and (p and s are mutually prime numbers)
[17]. An analytical solution valid for a general time-
dependent field is unknown even for this simplest model.
Much effort has been devoted to the case of extremely
short field pulses (d kicks) (see, e.g., [1]—and references
therein). In general, as a result of a single kick applied to
the rotor at t � tk , the coefficients cn transform as

cn�tk 1 0� �
1X̀

m�2`

in2mJn2m�P�cm�tk 2 0� , (5)

where

P �
Z 1`

2`
´�t� dt ,

and Jn�P� is the Bessel function of the nth order. The
result of multiple kicks applied at different times can be
obtained by combining transformations (5) after each kick
with a free evolution according to Eq. (4) between the
kicks. If the kicks are applied periodically to the system
with the period Trev, the system does not show chaotic
behavior, and the energy accumulates quadratically with
time (the so-called “quantum resonance” [2,18,19]). It is,
therefore, quite natural to examine potential accumulation
of angular squeezing of the rotor wave function under the
“quantum resonance” excitation. In this case, because of
the exact quantum revivals at the free-evolution stages,
the effect of N kicks of a magnitude P is equivalent to
FIG. 1. Angular distribution of a quantum rotor excited by a strong d kick (P � 85). The graphs correspond to (a) t � 0.5tf ,
(b) t � tf , (c) t � 2tf , (d) t � tf 1 Trev�2, (e) t � tf 1 Trev�3, (f) t � tf 1 Trev�4, (g) t � 1.8tf 1 Trev�2, (h) t �
1.8tf 1 Trev�3, and (i) t � 1.8tf 1 Trev�4, respectively.
163601-2
the action of a single strong pulse of strength NP (see,
e.g., [18]). In Fig. 1, we show numerically calculated
time evolution of the probability density jC�u, t�j2 after
a relatively strong kick of a magnitude P � 85 applied
at t � 0. Initially the rotor was in the ground s state
[cn�0� � dn0]. For the chosen values of t, several distinct
phenomena can be seen in these plots. First of all, the
wave function shows an extreme narrowing in the region
of small u after some delay following the kick (Fig. 1b).
The physics of this effect may be understood with the
help of the following semiclassical arguments. Consider
an ensemble of randomly oriented classical rotors subject
to a kick. The angular velocity of a rotor located at the
angle u is

v�u� � 2P sin�u� (6)

just after the kick, assuming negligible initial velocity. For
rotors from the region of small u ø 1, the acquired veloc-
ity is linearly proportional to their initial angle, so that all
of them arrive at the focal point u � 0 at the same time

tf � 1�P . (7)

This phenomenon is quite similar to the focusing of light
rays by a thin optical lens. For P ¿ 1, the shape of the
distribution at the focusing time tf is dictated by the aber-
ration mechanism [deviation of the cos�u� potential from
the parabolic one], and it is P independent. We consider
the orientation factor O � �1 2 cos�u�� (where angular
brackets mean averaging over the state of rotor) as a mea-
sure of the rotor orientation. For large enough P, the time-
dependent orientation factor (for the initial s state) may
163601-2
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be easily estimated by averaging over the initially uniform
classical ensemble of rotors having the velocity distribu-
tion of Eq. (6): O�t� � 1 2 J1�Pt�. Here J1�x� is Bessel
function of the first order. The minimal value O � 0.418
of the orientation factor is, in fact, achieved in the post-
focusing regime, at t � 1.84tf . As seen in Fig. 1c, a
new phenomenon can be observed in the angular probabil-
ity distribution just after the focusing. Sharp singularlike
features are formed in the distribution, which are moving
with time. Each of these features has a typical asymmet-
ric shape, with pronounced oscillations on one side and an
abrupt drop down on the other side. Again, the origin of
this effect can be traced in the time evolution of a classical
ensemble of initially motionless rotors.

After a kick applied at t � 0, the motion of the rotors
is described by

u � u0 2 P sin�u0�t �mod 2p� , (8)

where u0 is the initial angle. For t , tf Eq. (8) represents
a one-to-one mapping u�u0� (see Fig. 2a). At t � tf

the curve u�u0� touches the horizontal axis (Fig. 2b). At
t . tf the angle u0 becomes a multivalued function of u

(Figs. 2c and 2d). The classical time-dependent angular
distribution function of the ensemble is given by

f�u, t� �
X
a

f�ua
0 , t � 0�

jdu�du
a
0 j

. (9)

The summation in (9) is performed over all possible
branches of the function u0�u� defined by Eq. (8). It
follows immediately from Eq. (9) that even for a smooth
initial distribution, f�u,t � may exhibit a singular behavior
near the angles where du�du

a
0 ! 0. The quantum nature

of the rotor motion replaces the classical singularities by
sharp maxima in the probability distribution with the Airy-
like shape typical to rainbow phenomena. Indeed, this
effect is similar to the formation of caustics in the wave
optics [20], and rainbow-type scattering in optics and
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FIG. 2. Classical map representing the final angle u as a func-
tion of initial angle u0 for (a) t � 0.5tf , (b) t � tf , (c) t �
3tf , and (d) t � 10tf .
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quantum mechanics [21–23]. We should stress, however,
that the long-time asymptotic regimes are radically differ-
ent for the classical and truly quantum motion of the rotor.
Thus, contrary to the classical limit, in which the caustics
exist forever, they gradually disappear in the quantum
case because of the overall decay of the initial rotational
wave packet. On even longer time scale, another quantum
phenomenon can be seen, namely revivals and fractional
revivals of the initial classical-like motion. Figures 1e–1i
show several examples of fractional foci and rainbows in
the angular distribution, which is a purely quantum effect.

As we have demonstrated, a mere application of d kicks
at the condition of “quantum resonance” does not lead to
accumulated angular squeezing, and the orientation is satu-
rated at some finite asymptotic level. Here we suggest an
excitation scheme that exhibits the desired accumulation
property. As previously mentioned, the wave function of
the rotor reaches the state of the maximal orientation (i.e.,
minimal O value) after a certain delay Dt1 following the
application of the first kick at t � t1 � 0. We suggest to
apply the second kick at t2 � Dt1. Immediately after the
second kick, the system will keep the same probability den-
sity distribution. On the other hand, t � t2 will no longer
be a stationary point for O�t� � �1 2 cos�u�� �t�. The
orientation factor O�t�, and its derivative are continuous
and periodic functions of time in the course of a free evolu-
tion. Therefore, O�t� will reach a new minimum at some
point t2 1 Dt2 in the interval �t2, t2 1 Trev�. Clearly, the
new minimal value of the orientation factor is smaller than
the previous one. By continuing this way, we will apply
short kicks at iterative time instants tk11 � tk 1 Dtk . By
construction of this pulse sequence, the squeezing effect
will accumulate with time, in contrast to the quantum reso-
nance excitation. This is demonstrated by Fig. 3, which
shows calculated sequences 	Dtk
 and 	�1 2 cos�u�� �tk �

for a rotor initially in the s state and being kicked by pulses
with P � 3. The logarithm of the orientation factor gradu-
ally decreases, without any sign of saturation.
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FIG. 3. Accumulative angular squeezing. Graphs are shown in
double logarithmic scale.
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At the stage of a well-developed squeezing �O ø 1�,
the cos�u� potential may be approximated by a parabolic
one. It can be easily shown (both classically and quan-
tum mechanically) that in this limit our strategy provides
the following recurrent relationships for the time inter-
vals Dtk , successive values of the angular variance uk �
�u2�k � 2Ok, and normalized variance of the angular ve-
locity wk � ��2id�du�2�k�P2:

Dtk �
uk

uk 1 wk
,

uk11 � uk 2
u2

k

uk 1 wk
, (10)

wk11 � wk 1 uk .

For large k, the last two finite-difference equations may be
replaced by a system of coupled differential equations. The
latter has an exact solution providing the following asymp-
totics: �u2�k ~ 1�

p
k and Dtk ~ 1�k. This result is in

good agreement with the numerically observed power-laws
behavior of graphs 3a and 3b, and it describes correctly
their slopes at k ¿ 1. We note that in contrast to the
wave optics (in which the size of the focal spot is diffrac-
tion limited), our system may be, in principle, “unlimit-
edly” squeezed in angle. We also note that a quasiperiodic
sequence of kicks applied at tk11 � tk 1 Dtk 1 Trev
provides the same squeezing scenario for a quantum ro-
tor. The introduction of the Trev shift between pulses may
be useful in the practical realizations of the scenario to
avoid the overlap between short excitation pulses of a finite
duration.

All the described phenomena are rather common under
general conditions of a strong excitation of a quantum
rotor. The results of direct quantum numerical simula-
tions we performed for various interaction types and shapes
e�t� of the strong field in the three-dimensional case are in
a good agreement with the above quasiclassical arguments
even after thermal averaging [16]. The most spectacular
additional features observed in the 3D problem are the
glory-type singularities [21] at u � 0, p in the rotor angu-
lar distribution. They appear in the post-focusing regime,
when the newly emerging branches of the map (8) cross
the lines u � 0, p.

The predicted effects may be observed in a wide range of
systems with strongly driven rotational degrees of freedom.
Possible examples range from heavy-ion collitions (when
highly excited wave packets of nuclear rotational states are
produced [9]) to molecules subject to strong laser pulses,
and cold atoms trapped by standing light waves. The dy-
namics of the last system is formally related to that one
of the driven rotor [2]. The spectacular features described
in our paper may be observed in the spatial distribution
of an atomic ensemble driven by pulsed optical lattices.
Moreover, the related squeezing approaches may find ap-
plication in atom lithography of ultrahigh resolution [24].
163601-4
In the case of molecules, the considered effects may re-
veal themselves in the angular distribution of fragments
produced by intense laser-field molecular interaction. The
most direct evidence can be achieved in a two-pulse experi-
ment, in which the first strong nonresonant pulse attempts
to orient the molecular ensemble, while the second short
delayed pulse creates fragment ions.
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