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We examine a quantum phase transition in y-soft nuclei, where the O(6) limit is simultaneously a
dynamical symmetry of the U(6) group of the interacting boson model and a critical point of a prolate-
oblate phase transition. This is the only example of phase transitional behavior that can be described

analytically for a finite s, d boson system.
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Recently, the topic of quantum phase transitional behav-
ior of atomic nuclei has received a lot of attention, when
it was shown that new symmetries can describe atomic
nuclei at the critical points [1,2]. The new symmetries,
called X (5) and E(5), are obtained within the framework of
the collective model [3] under some simplifying approxi-
mations. Remarkably, the parameter-free predictions pro-
vided by these symmetries are closely realized in some
atomic nuclei [4,5]. The phase transitions considered in
these references are those of the ground state deformation,
which can conveniently be described by the three Euler
angles defining the orientation of the deformed nucleus in
space and the deformation parameters 8 and y defining
the form of the ellipsoid. These quantum phase transitions
take place at zero temperature and depend on the number
of nucleons.

The two new critical point symmetries focus on the
degree of freedom and are based on a separation of the
B degree of freedom from the y degree of freedom. An
infinite square well potential in the B8 degree of freedom
is imposed. Since these descriptions are embedded in the
framework of the collective model, they do not incorporate
finite N effects reflecting the finite number of nucleons in
actual atomic nuclei.

However, finite N effects are important, for at least two
reasons. First, classically, phase transitions occur only
for systems having an infinite number of constituents and
therefore an extension of the concept to systems having a
limited number of constituents is of importance. Second,
since atomic nuclei contain only an integer number of nu-
cleons, nature does not allow us to vary the control parame-
ters continuously in the region where the phase transition
occurs. While the experimental limitation to the integer
nucleon number leads to discrete changes in the properties
of atomic nuclei around the critical point, theoretical mod-
els do allow one to continuously vary the appropriate con-
trol parameter. By exploiting this idea, we have recently
studied [6] general characteristics of the phase transitional
character in collective models.

Using the interacting boson model (IBM) [7], one ob-
tains a very simple two-parameter description leading to
a symmetry triangle describing many atomic nuclei. This
Casten triangle has the three dynamical symmetries of the
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IBM: U(5), O(6), and SU(3) in the three vertices. These
correspond to vibrational nuclei with a spherical form
[U(5)], an axially symmetric prolate rotor with a mini-
mum at y = 0° [SU(3)], and an axially asymmetric ro-
tor with a flat potential in y [O(6)]. Note that, here, we
use the convention of Dieperink et al. [8] with 8 = 0 and
0°=1vy =60°.

In Ref. [6] a close relation was observed between the
critical points and the turning points of many observables
(although these points do not precisely coincide, presum-
ably due to the finite value of N [6]). The two critical
point symmetries occur at the point where the potential
becomes deformed, along the U(5)-SU(3) leg of the tri-
angle for X(5) and along the U(5)-O(6) leg for E(5) for
N — . These correspond to first- and second-order phase
transitions, respectively, as shown using the coherent state
formalism [8,9].

No phase transition is found [9] between the SU(3)
and O(6) vertices of the triangle. However, as discussed
in Refs. [10,11] in the context of catastrophe theory, an
analysis of the separatrix of the IBM-1 Hamiltonian in the
coherent state formalism shows that there is a phase tran-
sition in between oblate and prolate deformed nuclei. It
is the purpose of this Letter to examine this, widely un-
recognized, phase transition and its critical point symme-
try, which, in fact, coincides with the O(6) limit, from
the standpoint of physical observables. These observables,
in contrast to the quantities studied in Refs. [10,11], do
not rely on approximations inherent to the coherent state
formalism.

The control variable for changes between SU(3) and
O(6) is the parameter y in the quadrupole operator:

0= (sta + dats)? + y@@ta)?. (1

which traditionally is varied from y = —J7/2 [SU@®)
value] down to y = 0 [O(6) value]. For y = -7 /2 the
energy functional has a minimum at y = 0°, correspond-
ing to a prolate shape.

We first note that the derivatives of several observables
peak at the O(6) limit. Calculations with the extended
consistent-Q formalism Hamiltonian [12,13] of the IBM-1
are illustrated in Fig. 1 for the first derivatives of ¢», o,
and the SU(3) wave-function entropy, where the first two
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FIG. 1. Behavior of the first derivatives of the Q invariants
SUQ)

q>, 0, and the ground state wave-function entropy r in
an SU(3) basis when going from SU(3) to O(6), calculated for
N = 10 bosons. The effective boson charge is kept constant at
ep = 1, which affects the absolute scale of dgy/d .

are Q invariants [14—16] representing 82 and the softness
in 7y, and the last is a measure of the spreading of a wave
function in the SU(3) basis [17,18].

This observation leads to the natural issue of whether the
O(6) limit itself is not a critical point symmetry of a phase
transition. We will show that it is, and that the origin of
the phase transition lies in the form of the potential in the
v degree of freedom. This is logical because the energy
functional has a minimum at an axially symmetric shape
in SU(3) but becomes totally flat in y at O(6). Thus the
control variable for changes in V() is likewise y. As we
deal here with a phase transition in vy, the derivative of ¢,
in Fig. 1 does not show a strong peak at the O(6) limit.

In the construction of the symmetry triangle, solutions
with positive y have only occasionally been considered
[10,19], because they correspond to oblate ground state
deformations which are seldom found in actual atomic nu-
clei. However, the interacting boson approximation (IBA)
allows solutions with positive y as well. The energy func-
tional then has a minimum at y = 60°, corresponding to an
oblate deformation. The energy functionals as a function
of y and for several values of y are shown in Fig. 2, using
the parametrization of Ref. [20] and for ¢ = 1, and show
a phase transitional behavior at the O(6) value ycrit = 0.
For y < 0, Vpin is always at y = 0°, whereas, for any
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FIG. 2. The y dependence of the IBA energy functional calcu-
lated on the SU(3) to O(6) leg of the Casten triangle, for several
Xx Vvalues, both negative and positive. The calculation was per-
formed for N = 30. The inset shows the energy of the minimum
as a function of y.

x > 0,itis at y = 60°. One thus observes a discontinu-
ous jump of the location of the minimum in y at the phase
transition. The inset of Fig. 2 shows the energy of the
minimum, Enin (B, ¥), as a function of y. One clearly ob-
serves the kink typical for a first-order transition at y = 0.
This phase transition happens for any Hamiltonian yield-
ing a deformed minimum.

By extending the range of y to positive values the co-
incidence of the critical point and the turning point or ex-
tremum of the Q invariants ¢, K3, and o, is clearly seen
(see Fig. 3). Note that K3 is strongly connected to the y
deformation, and here it has a sign and not only an ab-
solute value as in the definition in Ref. [14]. As we pass
from O(6) to oblate deformation, the sign of K3 becomes
important. The value of o, has a sharp maximum at O(6).

For the value y = +7 /2, one obtains a dynamical
symmetry called SU(3), corresponding to an oblate axi-
ally symmetric rotor. By extending the symmetry triangle
from y = —/7/2to x = ++/7/2 we obtain a variation
of the Casten triangle, which is shown in Fig. 4. Here,
to the usual Casten triangle, U(5)-SU(3)-O(6), we add a
corresponding triangle for U(5)-SU(3)-O(6). As all legs in
the extended triangle contain a critical point, we also ex-
pect a critical point on the transition leg U(5)-SU(3). This
critical point has indeed been found using the methods of
Ref. [6]. It is natural to speculate that to this critical point
there corresponds for N — <c also a critical point symme-
try (which might be denoted by X(5) although a detailed
study still needs to be done). The new triangle also maps
the phase transitions which occur inside the triangle. They
are the first-order transition occurring on the O(6)-U(5)
axis to the dot in the center and the first-order transition
from thereon outwards to the legs. The central dot itself
represents the second order-transition [E(5)].

Although oblate nuclei or transitions from 7y-soft to
oblate shapes are rare, this situation may change in the fu-
ture with access to neutron-rich exotic nuclei, where shell
reordering may lead to regions of oblate nuclei. Of course,
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FIG. 3. Behavior of the shape invariants g,, K3 and o, as a
function of y for negative and positive values of y, calculated
for N = 10 bosons. The observables g, and K3 are the quadratic
and cubic shape invariants, and o, is an invariant with power
six which measures the amount of fluctuations in the variable 7.

SUQ)

atomic nuclei that are well described by the O(6) limit do
occur, for instance, in '°°Pt [21] and nuclei in the Xe-Ba
mass region [22]. They are found in mass regions with
a relatively small number of valence nucleons. It would
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FIG. 4. The Casten triangle, expanded to include the oblate
symmetry SU(3). The circles indicate the dynamical symmetries
of the IBM model; the solid dots represent critical points along
the legs of the triangle. Their specific location follows the
convention of Ref. [6]. The dashed lines represent trajectories
of critical point behavior inside the triangle. On this modified
triangle, O(6) forms both a dynamical symmetry and a critical
point for the SU(3) to SU(3) transition.
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be of high interest to search for atomic nuclei having a
slightly oblate deformation in more neutron-rich nuclei in
the Pt mass region in order to study this possible phase
transition.

Returning to the phase transitional behavior at O(6), one
notes several important differences with the critical point
symmetries E(5) and X (5). First, the phase transition con-
cerns the deformation variable y instead of 8. So, physi-
cally, it is a jump from prolate to oblate shapes at the
critical point, y = 0. Second, because the O(6) limit can
be exactly solved [7], one does not need any approximation
to describe analytically the behavior at the critical point.
Finally, and most importantly, the exact solution is ob-
tained for any N and not only for N = oo,

To demonstrate that this is a finite N description of a
phase transition, several observables, all related to the y
degree of freedom, can be studied at the critical point as
a function of N in an exact way. As an example, Fig. 5
shows some typical experimental signatures but now calcu-
lated for N = 16. Note that Q(2]") and B(E2;2; — 2})
are given in arbitrary units due to their dependence on an
effective boson charge. We see in Fig. 6, using as an ex-
ample the SU(3) ground state wave-function entropy, how
the variation around y = 0 becomes sharper and sharper
as N approaches infinity.

20+ Q(2) .

100 t t t t
|B(E2;2§ ->27)

-1 =05 0 0.5 1
X
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FIG. 5. Experimental quantities illustrating the phase transi-
tional behavior are shown as a function of y for N = 16. The
ratio R4/, is the ratio of the 41+ and 27 energies.
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FIG. 6. Wave-function entropy in an SU(3) basis for the
ground state for boson numbers N = 10 and N = 30. The
phase transitions become much sharper with increasing boson
numbers.

In conclusion, we have discussed the phase transition
in y-soft nuclei, which occurs because of the discontinu-
ous jump of the location of the minimum of the energy
functional in the y degree of freedom. At the O(6) limit
the critical behavior can be exactly solved for any num-
ber of interacting bosons. Thus, it provides a base to
study N-dependent effects in quantum phase transitions.
The O(6) limit is therefore unique in being, simultane-
ously, both a dynamical symmetry of the U(6) group of
the IBA and a critical point of a prolate-oblate phase
transition.
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