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We show that high-temperature expansions provide a basis for the novel approach to efficient Monte
Carlo simulations. “Worm” algorithms utilize the idea of updating closed-path configurations (produced
by high-temperature expansions) through the motion of end points of a disconnected path. An amaz-
ing result is that local, Metropolis-type schemes using this approach appear to have dynamical critical
exponents close to zero (i.e., their efficiency is comparable to the best cluster methods) as proved by
finite-size scaling of the autocorrelation time for various universality classes.
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The Metropolis scheme [1] is usually the most univer-
sal and easy to program approach to Monte Carlo (MC)
simulations. However, its advantages are much reduced
near critical points. It is believed that local [2] Metropolis
updates connecting configurations by a Markovian chain
are inefficient at the critical point because their autocorre-
lation time, t, scales as Lz, where L is the system linear
dimension and z is the dynamical critical exponent which
is close to 2 in most systems [3,4].

An enormous acceleration of simulations at the criti-
cal point has been achieved with the introduction of clus-
ter algorithms by Swendsen and Wang [5]. However, the
original method and its developments (both classical and
quantum) [6–8] are essentially nonlocal schemes, and we
are not aware of any exception to this rule.

In this Letter we propose a method which essentially
eliminates critical slowing down and yet remains local.
The cornerstone of our approach is to introduce a con-
figuration space of closed paths to represent statistics of
the model. Closed-path (CP) configurations may then be
sampled efficiently using the worm algorithm (WA) intro-
duced in Ref. [9] for quantum statistical models in which
closed trajectories arise from imaginary-time evolution of
world lines. In classical models the CP representation de-
rives from high-temperature expansions for a broad class
of lattice models (see, e.g., Ref. [10]). In two dimensions
(2D), another family of WA may be introduced by consid-
ering domain-wall boundaries as closed paths.

We note that our approach is based on principles which
differ radically from cluster methods and, most probably,
has a different range of applicability. For example, the
CP representation is most suitable for the study of super-
fluid models by having direct Monte Carlo estimators for
the superfluid stiffness (through the histogram of winding
numbers [11]) which are not available in the standard site
representation.

In what follows we first recall how high-temperature ex-
pansions work by employing the Ising model as an example
(while keeping notation as general as possible). We then
explain how WA is used to update the CP configuration
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space. Next, we discuss specific implementations of WA
for jcj4, XY , and q � 3 Potts models, and comment on the
special property of 2D models which allows an alternative
CP parametrization of the configuration space. The effi-
ciency of the new method is studied by looking at energy
autocorrelation times for six different universality classes.
It is found that for 2D and 3D Ising models, 2D and 3D XY
models, and Gaussian model the t�L� scaling is consistent
with the relation t�L� � t0 1 c ln�L�, i.e., the dynamic
critical exponent is close to zero. For the two-dimensional
q � 3 Potts model our data are best fit to a power law with
z � 0.55, i.e., in all cases the value of z formally satisfies
the Li-Sokal [12] bound z . a�n (a and n are the spe-
cific heat and correlation length critical exponents) derived
for the Swendsen-Wang [5] algorithm.

Since high-temperature expansions for various models
can be found in standard texts (see, e.g., Ref. [10]), we
briefly outline the procedure for the Ising model
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where K � J�T is the dimensionless coupling parameter
between spin variables si � 61 and index b � �ij�
refers to the simple cubic/square lattice bonds between
nearest-neighbor sites i and j (we understand site indices
as vectors). We will also use another (identical) notation to
label bonds by specifying the lattice site and the direction
towards its nearest neighbor, n, i.e., b � �i, n�. Since H
is a sum of bond Hamiltonians, the corresponding Gibbs
weight factorizes in terms of exponentials for each bond.
By expanding each exponential in a Taylor series, we arrive
at an expansion in powers of K (or inverse temperature),
e2H�T �

Q
b �

P`
Nb�0 K

Nb �sisj�Nb�Nb!�. In what follows
we will consider summation indices �Nb� as integer vari-
ables Nb � 0, 1, 2, . . . living on bonds, and call them the
“bond state,” or the “bond configuration.” For each con-
figuration of bonds, �Nb�, the summation of e2H�T over
spin variables factorizes,

Q
i �

P
si�61 s

ki
i � �

Q
i Q�ki�,

where ki �
P

n Ni,n is the sum over bond states incident
on site i. This allows us to sum out the spin variables and
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reformulate the problem in terms of bond states [10]. The
partition function, for example, takes the form

Z 	
X
�si�

X
�Nb�

Y
b

KNb

Nb!
�sisj�Nb �

X
�Nb�[CP

WZ��Nb�� . (2)

Graphically, each bond state can be represented by lines
ascribed to bonds, the number of lines on the bond being
equal to Nb . The closed-path constraint �Nb� [ CP is im-
posed by symmetry: Q�k� is nonzero only if the number
of bond lines connected to the site i is even. The sum-
mation includes all possible CPs, both connected and dis-
connected, with self-intersections and overlaps. The bond
configuration weight is given by

WZ��Nb�� �

√Y
b

KNb

Nb!

! √Y
i

Q�ki�

!
, (3)

and for the Ising model we simply have Q�k� 	 2.
The spin-spin correlation function G�i1 2 i2� � �si1si2 �

by definition equals g�i1 2 i2��Z, where g�i1 2 i2� �P
�si� si1si2e

2H�T . Using the same trick with the expan-
sion of e2H�T and summation over spin variables, we ar-
rive at bond configurations for g which differ from those
contributing to the partition function in only one respect:
there are two special sites i1 and i2 with an odd number
of bond lines connected to them (if i1 fi i2); see Fig. 1.
These points are the only places where the path may start
and end. We will abbreviate the configuration space for
the g function as Pg: it includes the set of all bond con-
figurations that either have an even number of bonds in-
cident on every site or have an even number of bonds
incident on all but two sites. The Pg-configuration weights
Wg are given by the same expression (3), provided ki �
di,i1 1 di,i2 1

P
n Ni,n.

The above consideration is a perfect setup for the Monte
Carlo simulation of a finite-size cluster [13]. The key point
is that configurations for Z and g�0� have identical bond
elements since CP is an i1 � i2 subset of Pg. Therefore,
the (non-normalized) statistics for g and Z can be accumu-
lated within the same MC process, which means that the

i

i1

2

FIG. 1. A typical bond configuration for the correlation func-
tion g�i1 2 i2�. The two circles correspond to the points i1 and
i2, and the solid line width is proportional to the bond state
number Nb (number of elementary lines); the Nb � 0 terms are
shown by dashed lines.
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(unknown) normalizing factor is the same for both g and
Z, and thus irrelevant to their ratio G � g�Z.

Suppose that bond configurations �Nb� (or diagrams,
Fig. 1) are generated by some MC process with proba-
bilities proportional to their weights. Then, by standard
Metropolis rules, the diagram with i1 2 i2 � i contributes
unity to the stochastic MC sum for g�i�. If i2 � i1 then
the closed-path Pg diagram contributing unity to g�0� has a
weight Wg � 
Q�ki1��Q�ki1 2 2��WZ , i.e., it can be easily
weighted analytically against the CP diagram contributing
to the partition function [the g�0� correlator has two extra
powers of spin operators on site i1, and this is accounted
for by the ratio of Q factors]. Thus, this diagram also adds
Q�ki1 2 2��Q�ki1� to the stochastic sum for Z. It means,
that MC estimators for g�i� and Z defined on Pg are

g�i jPg� � di22i1,i , Z�Pg� �
Q�ki1 2 2�

Q�ki1�
di2,i1 . (4)

The ratio g�i��Z yields the physical result for G�i�.
The spin susceptibility xLd � ��

P
i si�2� � �

P
ij sisj � is

given by x �
P

i g�i��Z. The bond energy may be com-
puted in two ways: (i) as the nearest-neighbor sum E �
�Ld�2�K

P
jij�1 g�i��Z, and (ii) using direct estimator,

E � E �Z, which is nonzero only for the CP configura-
tions contributing to Z:

E �Pg� �
Q�ki1 2 2�

Q�ki1 �
di1i2

X
b

Nb , (5)

where the first factor accounts for reweighting be-
tween Pg and CP, and the last factor follows fromP

�si�
P

b Hbe2H�T 	 dZ�d ln�K�. Our results for t were
obtained using this estimator.

WA emerges as an idea to update Pg configurations
shown in Fig. 1 through the space motion of the end points
i1 and i2 only [9]. One may consider the end point i1 as
if it is the tip of a “magic pen”: when i1 is shifted to the
neighboring site, the pen “draws” a new or “erases” an ex-
isting bond line (increases or decreases the bond number
by 1; when i1 � i2, one is free to start drawing/erasing
bond lines from any site. The algorithm thus employs two
elementary updates which are proposed in the context of
a given configuration: if i1 � i2, then with probability p0
we propose to “move” both end points to site i0 selected at
random among all Ld lattice sites, and with probability
p1 � 1 2 p0 to “shift” the end point i1 to one of the
neighboring sites by selecting the direction of the shift at
random; if i1 fi i2 we always propose to shift i1. Formally,
p0 [ �0, 1� and arbitrary otherwise; our calculations were
done with p0 � 0.5.

The move-update satisfies detailed balance and its ac-
ceptance ratio is unity for the Ising model; in a general
case, it involves the ratio of Q functions,

Pmv�i ! j� �
Q�kj 1 2�
Q�kj�

Q�ki 2 2�
Q�ki�

. (6)

We recall that the end point is associated with the extra
si variable on this site (before summation over spins), and
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moving two end points from i1 to i0 changes ki variables
on these sites.

Shift-updates change the position of the end point i1
and simultaneously increase/decrease the bond state by 1.
We select which way to proceed with probability 1�2. The
shifts i ! j with Nb��ij� ! Nb 1 1 are balanced by shifts
j ! i with Nb ! Nb 2 1, and the solution of the standard
balance equation [1] is

Psh�i ! j,Nb ! Nb 1 1� � r
K

�Nb 1 1�
Q�kj 1 2�
Q�kj�

,

(7)

Psh�i ! j,Nb ! Nb 2 1� � r
Nb

K
Q�ki 2 2�
Q�ki�

, (8)

where

r �

8<
:

1��2p1� if i1 � i2 � i ,
2p1 if i1 � i, i2 � j ,
1 otherwise.

(9)

The practical implementation of the algorithm is as fol-
lows. One starts from an arbitrary bond configuration, e.g.,
from Nb � 0 for each b, and then performs a set of pro-
cedures which forms a standard local Metropolis update
repeated in a cycle: (i) Select the update. If i1 fi i2 then
shift i1; if i1 � i2 then either move i1 and i2 or shift i1
as described above. (ii) Calculate acceptance probabilities
using Eqs. (6)–(9); if the update is accepted, then change
the configuration accordingly. (iii) Collect statistics for
various quantities using MC estimators (4) and (5) and go
to step (i). It takes, on average, 5 3 1027 s of CPU time
on a PIII-600 processor to perform the update.

The Ising model has a special property which can
be used to enhance the efficiency by truncating the
configuration space. Namely, by using identity eKsisj 	
cosh�K� ? 
1 1 tanh�K�sisj�, one can restrict the bond
summation to Nb � 0, 1 only. The corresponding modifi-
cations of the scheme are straightforward.

We now turn to the jcj4 model (ci is a complex
variable):

2
H

T
�

X
�ij�

�cic
�
j 1 c.c.� 1

X
i


mjcij
2 2 Ujcij

4� ,

(10)

the two limiting cases of which are the Gaussian model,
U � 0, and the XY model, U � `. The procedure of
factorizing the partition function expansion in terms of
the bond Hamiltonian,

P
b��ij� �cic

�
j 1 c.c.�, is exactly

as before [the second term in (10) is kept in the expo-
nent]. The only new ingredient is that now for each bond
we have two different terms, cic

�
j and c

�
i cj , and there-

fore the expansion has to be performed for each of them
separately. Graphically, this can be captured by drawing
lines with arrows, thus specifying each term by the ar-
row direction. Correspondingly, the bond state is defined
by two numbers �N �1�

b ,N �2�
b � which tell how many lines go

along this bond in each of the two directions. All inte-
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grals
R
dc emjcj22Ujcj4 cm�c��m0

� dm,m0Q�k � 2m� are
easily tabulated prior to the simulation. Further discussion
of the algorithm and its application to jcj4 and Potts mod-
els can be found in Ref. [14]. Here we simply mention
an estimator for the winding number of the closed-path Pg

configuration (which has exactly the same meaning as in
the world line quantum Monte Carlo [11])

Ma �
Q�ki1 2 2�
Q�ki1 �L

di2,i1

X
b��i,a�

�N �1�
b 2 N

�2�
b � , (11)

where a � x, y, z, . . . .
We performed extensive tests of our algorithm by com-

paring to known results. In particular, we reproduced the
exact answer for x�L � 4� for the 3D Ising model [15] to
five significant digits, critical points of the 3D XY model
[16] (to five significant digits using finite-size scaling of
magnetic susceptibility up to L � 160), jcj4 models at
several couplings [17] [to 4 5 digits (see Ref. [18])], E
and x for various system sizes for the q � 3 Potts model
in 2D [12] (to four digits).

In Fig. 2 we present data for the integrated energy auto-
correlation time measured in MC sweeps (one sweep �
dLd updates). In all cases, except the q � 3 Potts model
in 2D, they are best fit to the linear in lnL behavior. We
may not exclude that logarithmic scaling at some larger
L crosses over to the power law, t�L� � Lz, with small
z. To get an estimate (upper bound) for the possible dy-
namic exponent we mention in the figure caption, the slope
z�L� � d ln�t��d ln�L� at the largest simulated L. For
the q � 3 Potts model our data scale as t � L0.55 for
L . 64, although the dynamic exponent is showing a sys-
tematic decrease with L. This has to be compared with
the value z � 0.515 for the Swendsen-Wang algorithm
[12]. Our data for z do not contradict the Li-Sokal bound
z . a�n because for all models discussed here a�n is
very small, with the exception of the q � 3 Potts model
where a�n � 0.4. Unlike other local schemes, the auto-
correlation time for magnetic susceptibility and winding
numbers was found to be shorter than t for energy.

High-temperature expansions are not the only proce-
dures to arrive at the CP configuration space and WA.
For example, in lattice models with discrete site variables,
one can unambiguously specify the state (up to symmetry
transformations) by drawing domain boundaries, which,
in 2D, may be considered a CP configuration. For the
Ising model the configuration weight is simply W�CP� �Q

b e
K�2Nb21�, where the bond state takes values Nb��ij� �

0, 1 (Nb��ij� � 0 if sites i and j belong to the same domain,
and Nb � 1 otherwise). To implement WA for efficient
sampling of domain boundaries we formally enlarge the
configuration space to include nonphysical g-type configu-
rations of domain walls with two end points and proceed
exactly as discussed above. The only difference is that now
“open” boundaries with i1 fi i2 have no physical meaning
and serve just for updating purposes. Our results for the
2D Ising model in Fig. 2 were obtained using domain-wall
representation.
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FIG. 2. Autocorrelation times for various universality classes. The 3D Ising model is fitted to t � 24.3 1 9.2 ln�L�, and z�L �
64� � 0.18 (see the text). The 2D Ising model is fitted to t � 27.2 1 6.2 ln�L�, and z�L � 512� � 0.25. The 3D XY model is fitted
to t � 1.7 1 3.85 ln�L�, and z�L � 128� � 0.2. The 2D XY model is fitted to t � 1.85 1 2.05 ln�L�, and z�L � 640� � 0.16.
The 3D Gaussian model is fitted to t � 18.9 1 5.8 ln�L�, and z�L � 64� � 0.17. The q � 3 Potts model in 2D is fitted to the
power law t � 4.3L0.55.
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