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We present one-dimensional local potentials with an absolute reflection at a given energy value which
can be above barriers. The corresponding energy dependence of a reflection coefficient exhibits resonance
behavior. The inversion technique provides the potentials with specified widths of reflection resonances,
their number and positions. The multichannel systems (exact models) with a complete reflection are also
given.
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The foundation of quantum mechanics is, after all, the
laws of wave motion in different potentials. The most in-
teresting are the potentials with special qualitative proper-
ties because they give a deeper insight into the peculiarities
of the microworld. We have revealed the phenomenon of
total reflection at selected energy points by specific po-
tentials. It is remarkable that this can occur even for the
above-barrier motion. The possibility of such a resonance
reflection has never before been mentioned.

Consider the one-dimensional Schrödinger equation on
the whole axis with time-independent local potentials (we
put h̄2 � 2m � 1� . The mathematical aspects of the cor-
responding scattering problem can be found in [1–4], in-
cluding the inverse problem. For our purpose, we shall at
first need potentials of the Neumann-Wigner–type on the
semiaxis 0 # x , ` which have bound states embedded
into the continuum (BSEC) [5–9]. The expression for the
potential in the simplest case of the only bound state at the
energy E � EBSEC is as follows:
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This potential is energy independent. Do not confuse the
following: the quantity E � EBSEC represents, in expres-
sion (1), a parameter. The wave function normalized to
unity at E � EBSEC . 0 has the form
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The potential (1) and the wave function (2) are shown on
the right-hand side of Fig. 1 for x $ 0. They all decrease
asymptotically � 1

x as x ! `. The parameter c is the
derivative of the BSEC function (2) at the origin. The wave
function knots at E � EBSEC coincide with even knots of
the potential [and with knots of sin�kbx�]. This statement
follows directly from formulas (1) and (2). From a physical
point of view, this conformity between the oscillations of
the potential and the BSEC wave function is important
for BSEC to exist. The wave confinement mechanism
for BSEC was explained in detail in [10]. Besides the
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BSEC (2), there is another linearly independent solution at
E � EBSEC which diverges asymptotically as x ! `. The
solutions at energies E fi EBSEC are the scattering states.
Their oscillations are not in “resonance” with VBSEC�x�
and so cannot be confined by it.

Let us now construct the potential Vr �x� on the entire
axis which vanishes on the negative semiaxis and coincides
with VBSEC�x� (1) on the positive semiaxis

Vr �x� �

Ω
0, x , 0
VBSEC�x�, x $ 0 (3)

(see Fig. 1).
For this potential, the property needed to retain the

BSEC is naturally lost (the waves freely propagate
along the negative semiaxis). Instead, the potential

FIG. 1. The scattering wave function corresponding to total
reflection at E � EBSEC � k2

b � 1; c � 1 (solid line) by the
potential which is zero on the negative semiaxis and equal to the
BSEC potential on the positive semiaxis. The C axis is shifted
up so that its origin coincides with the value k2

b � EBSEC � 1
of the energy axis. Note the coincidence of BSEC knots with
the even knots of the BSEC potential. This exact correlation
is important for the wave suppressing for x . 0 at the energy
value E � EBSEC � 1.
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Vr�x� acquires another remarkable property: it totally
reflects the waves incident from the left at the energy
EBSEC. It is because the only physically acceptable
solution Cr�x, EBSEC� coincides on the right semiaxis
with the C�x, E � EBSEC� vanishing asymptotically
as x ! `. On the negative semiaxis, the solution
Cr �x, EBSEC� is a combination of free waves, a con-
crete form of which is determined from the condition
of a smooth matching with solution (2) at the point
x � 0. We have Cr�x, EBSEC� � c sin�kbx��kb �
c�exp�ikbx� 2 exp�2ikbx���2ikb, x , 0, i.e., incident
from the left, and outgoing waves in the solution
Cr �x, EBSEC� have equal amplitudes. As a result,
we obtain the unit reflection coefficient modulus
jR�EBSEC�j � 1. One can see in Fig. 1 that the total
reflection energy EBSEC can be above all the barriers of
the potential.

At energies E fi EBSEC, the potential (1) does not keep
the waves C�x, k�, k �

p
E, and 0 # x , ` from propa-

gating to the right. In other words, we have scattering
states on the semiaxis outside the energy point EBSEC.
For these states, the conformity between the potential and
wave oscillations, being necessary for retaining the bound
state, is violated. The energy dependence of the reflection
coefficient modulus jR�E�j has a resonance character, as is
shown in Fig. 2. Greater values of c correspond to wider
resonances and vice versa. So one can control the reso-
nance reflection peak width at E � EBSEC by varying the
parameter c. We can also change the number of resonance
points and their positions. For this purpose, we must take
the potentials with several BSEC states on the positive
semiaxis. Such potentials are readily generated by using
the inverse technique [7]. The potential (1) considered
above is a particular case of the corresponding exactly
solvable inverse problem models.

FIG. 2. The modulus of the reflection coefficient jR�E�j for
potentials having BSEC on the semiaxis 0 # x , ` at energy
EBSEC � 10 with resonance reflection at this point for waves on
the whole axis. The increase in the BSEC parameter c leads to a
greater width of the reflection resonance on the whole axis. With
c ! 0, this width tends to zero. The dashed line corresponds to
the limiting peak in jR�E�j.
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The manifold of resonance reflection potentials is not
exhausted by the interactions considered above. In the
case of the whole axis we are not restricted by the condi-
tion that Cr�x � 0� � 0. The inverse problem formalism
allows one to construct the potentials with quadratically
integrable states in the continuum with an arbitrary loga-
rithmic derivative at x � 0. If continued to the whole axis
as in Eq. (3), these potentials are also absolutely reflective
at chosen points of the spectrum. And it is not significant
that the corresponding states on the right semiaxis have no
physical meaning in themselves. The mechanism of sup-
pression of waves on the right semiaxis is the same as for
the BSEC.

It should also be added that just the tails of the BSEC po-
tentials beginning arbitrarily far (the intervals a # x , `

for any a) cause, in fact, the wave confinement. Thus,
one can add almost any potential from the left (e.g., the d-
function barrier) without moving the position of the reflec-
tion resonance, but its shape can be somewhat distorted.

Of course, the periodic potentials on the semiaxis also
have the property of total reflection. This occurs at the en-
ergy values belonging to the forbidden spectral zones of
the same periodic potential continued to the whole axis.
Unlike our case, periodic potentials are not quadratically
integrable as potentials with BSEC and have the whole
bands of total reflection. By the way, perturbation of the
periodic potential on the semiaxis can create a BSEC in
the allowed spectral zone [7]. For the waves at EBSEC on
the whole axis this perturbation will also be totally reflec-
tive (we have verified this on a Dirac comb model).

One should not confuse the phenomenon with the total
reflection of the waves incident at some angle upon a sur-
face dividing different optical media. In our case, the total
reflection is even for incident waves perpendicular to this
surface.

The resonance reflection also takes place for a multi-
channel system of coupled Schrödinger equations for par-
tial channel components Ca of the total wave function
[11]:

2C00
a�x� 1

X
b

Vab�x�Cb�x� � EaCa�x� ,

Ea � E 2 ea .
(4)

Here the interaction matrix elements Vab couple the chan-
nels (corresponding to individual equations), ea represents
the threshold energies above which ath channels become
open. Such systems often occur in the description of multi-
particle quantum systems (nuclear, molecular, etc.). There
are more solutions in the multichannel case and these en-
rich the possibility to find new effects. The direct (matrix)
generalization of the one-channel theory is possible. In
[9,11], the corresponding analogs of BSEC states on the
semiaxis were presented. It was shown that for M coupled
equations there could “paradoxically” coexist, for instance,
m # M scattering solutions with M-m BSEC solutions at
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the same energy value EBSEC. It is clear that by applying
these solutions and using an analogous scheme as above
we obtain M-m linearly independent scattering solutions
on the whole axis with complete reflection at the same en-
ergy EBSEC. It may seem paradoxical that this can be used
for the construction of an exactly solvable model with the
simultaneous coexistence of total reflection and absolute
transparency at the same energy for the same interaction
but for different combinations of incident waves in differ-
ent channels. A trivial example allows one to understand
this: consider, as a two-channel system, a pair of uncou-
pled one-channel systems, one of which has total reflection
and the other has absolute transparency at the same energy.
Then, a channel coupling between two uncoupled chan-
nels can be switched on without disturbing the features of
their continuum spectral branches. This can be done with
the creation of a bound state with nonzero partial channel
components of the spectral weight vector [7,8,11].

We have revealed that multichannel systems also permit
another mechanism of the total resonance reflection. For
example, in a two-channel system, incident waves in the
first open (E1 . 0) channel partially transit to the second
closed (E2 , 0) channel through the interchannel cou-
pling V12. In the second channel these waves are confined
in space, i.e., unable to go to infinity [C2�x� decreases
as exp�7

p
jE2j x� when x ! 6`] . The waves returning

to the first channel as a result of channel coupling V21
propagate in both directions. The decaying waves going in
the forward direction can undergo destructive interference
with the transmitted waves in the first channel (these waves
can have the same amplitudes but opposite phases). This
complete wave cancellation which can occur at some en-
ergy point implies a total reflection. Corresponding reso-
nances are shown in Fig. 3 for the model with the
d-interaction matrix Vabd�x�. One can control the

FIG. 3. The energy dependence of the absolute value of the
reflection coefficient jR�E�j for waves in the first channel when
the second one is closed (its threshold is ´2 � 1). Parameters
of the interaction matrix Vabd�x� are chosen V11 � 1; V22 �
20.4; V12 � 0.1, 0.2, and 0.3.
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position Er of the reflection resonance on the energy scale
by choosing the V22 value.

The smaller the parameter V21 � V12 the more slowly
the waves return (decay) to the first channel, which pro-
motes the wave accumulation in the second closed chan-
nel. Thus the variation of the parameter V21 changes the
resonance widths (decay rate). The decrease in V11 makes
the resonance broader.

There are also transparency resonances at the energy
points where the phases of the waves decaying from the
second channel into the first one are opposite to the phases
of the reflected waves. Figure 3 shows just the existence
of both the total reflection and transparency at different
energies for the same quantum system.

The resonance reflection and transparency also occur in
the case of periodic structure of the coupled channels when
the energy is chosen in a forbidden zone of the second
channel. This was verified by using the model with the
Dirac comb periodic potential in the second channel and
the d-interaction matrix Vabd�x� under a special choice
of the interaction parameters Vab.

The effect of one-channel and multichannel resonance
reflections can be used for spectral wave filters. For ex-
ample, the desired effective one-dimensional potentials can
be constructed in different thin waveguides (in particular,
quantum wires) with a rarefied spectrum of transverse vi-
brations when the excitations of higher levels can be ne-
glected. The potential for the longitudinal motion can be
formed by modulation of the width along the wire. This is
because the squeezing of a waveguide lifts the energy lev-
els of the transverse motion and this effectively increases
the potential energy of the longitudinal motion. It is also
possible to modulate, by using the law (1), the coordinate
dependence of the refractive index occurring in an ana-
log of the Schrödinger equation for optic monochromatic
waves. In neutron physics, one can construct the desired
effective potentials by employing proper materials and ap-
plied modulated magnetic fields.
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