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Three-Body Recombination into Deep Bound States in a Bose Gas with Large Scattering Length
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An effective field theory for the three-body system with large two-body scattering length a is applied
to three-body recombination into deep bound states in a Bose gas. The recombination constant a is
calculated to first order in the short-distance interactions that allow the recombination. For a , 0, the
dimensionless combination ma��h̄a4� is a periodic function of lnjaj that exhibits resonances at values
of a that differ by multiplicative factors of 22.7. This dramatic behavior should be observable near a
Feshbach resonance when a becomes large and negative.
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One important factor limiting the achievable density in
Bose-Einstein condensates (BEC’s) of trapped atoms is
the loss of atoms through three-body recombination [1,2].
Such losses occur when three atoms scatter to form a
molecular bound state and a third atom. The kinetic en-
ergy of the final-state particles allows them to escape from
the trapping potential. This process provides a unique
window on three-body dynamics of cold atoms. In a
BEC, three-body loss rates could also reveal new collec-
tive mechanisms involving a molecular condensate [3].

The recombination event rate can be parametrized as
nrec � an3, where a is the recombination constant and n
is the density of the gas. In general, a is sensitive to the
details of the interaction potential. If the s-wave scatter-
ing length a is large compared to the size of the atoms,
however, the problem simplifies. Assuming that a is the
only important length scale, dimensional analysis implies
a � C h̄a4�m, where m is the mass of the atoms and C is
dimensionless. For a . 0, there can be three-body recom-
bination into a shallow s-wave state with binding energy
h̄2��ma2�. For either sign of a, there can also be recom-
bination into deep molecular bound states. The coefficient
a can then be split into two contributions aS and aD com-
ing from recombination into the shallow and deep bound
states, respectively.

The three-body recombination into the shallow bound
state has been studied in Refs. [4–7]. For the s-wave
contribution, C is an oscillatory function of lna:

aS � 67.9 cos2�s0 ln�aL�� 1 1.74�
h̄a4

m
�a . 0� ,

(1)

where s0 � 1.0064 and L� is the three-body parameter
introduced in Ref. [7]. In the adiabatic hyperspherical ap-
proximation, the oscillatory behavior can be explained by
interference between paths connecting two hyperspherical
potentials [5,6]. Within the framework of effective field
theory, this unique behavior is due to scaling violations
created by a three-body interaction required for consis-
tent renormalization [7]. For a , 0, there is no shallow
bound state (there is a low-energy virtual state instead) and
aS � 0. The case of a two-body potential with a single
160407-1 0031-9007�01�87(16)�160407(4)$15.00
deep bound state has been studied by Esry, Greene, and
Burke [6]. They found numerically that aD has a reso-
nance at a particular value of a. They conjectured that aD

should be enhanced at an infinite number of Efimov-like
shape resonances as a approaches 2`.

Effective field theory (EFT) is a powerful method for
describing systems composed of particles with wave num-
ber k much smaller than the inverse of the characteristic
range R of their interaction. EFT focuses on the universal
long-distance aspects of the problem, by modeling the in-
teractions as pointlike [8]. For wave numbers k ø 1�R,
one can expand in powers of the small variable kR. Generi-
cally, the scattering length a is comparable to R, and the
expansion is effectively in powers of ka. In the case
of large scattering length a ¿ R, the dependence on ka
must be treated nonperturbatively. In the EFT, a single
three-body parameter is necessary and sufficient to renor-
malize the ultraviolet divergences at leading order in kR
[9]. The scattering length and this three-body parameter
describe all low-energy three-body observables up to er-
rors of order R�a.

In this Letter, we use EFT methods to study recombina-
tion into deep bound states. The deep bound states are out-
side the range of the EFT and cannot be treated explicitly.
Nevertheless, their contribution to three-body recombina-
tion can be calculated within the EFT by using the optical
theorem [cf. Fig. 1(a)].

The three-body recombination channels generate imag-
inary parts in the three-atom elastic scattering amplitude.
The imaginary part from recombination into the shallow
bound state is dynamically generated in the EFT. The
imaginary part from recombination into deep bound states
can be taken into account by adding a local interaction term
to the EFT.

A similar approach has been used successfully to
describe the annihilation decay rates of positronium in
QED and heavy quarkonium in QCD within the frame-
work of nonrelativistic EFT’s [10]. The annihilation of
positronium into photons involves intermediate states with
relativistic electrons and positrons that are outside the
range of validity of the EFT. However, the effects of an-
nihilation on e1e2 scattering at low energies can be taken
© 2001 The American Physical Society 160407-1
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FIG. 1. (a) Illustration of the optical theorem. Two-body
bound states are indicated by the shaded double line. (b) Dia-
grams for the contribution of the deep bound states. The single
(double) lines represent the exact propagators for the field c
(d) and the triangle denotes an insertion of ih0.

into account systematically by adding local four-fermion
operators with imaginary coefficients to the effective
Lagrangian. For recombination into a molecule with
binding energy B ¿ h̄2��ma2�, the molecule and the
recoiling atom emerge with large momenta of order

p
mB,

outside the domain of the EFT. Up to corrections of
order p2��mB�, where p is the momentum scale of the
initial atoms, the effect of the recombination process on
three-atom elastic scattering can be taken into account
with a local three-body interaction term whose coefficient
has an imaginary part. The interaction is local, because the
three atoms have to approach to within a distance of order
h̄�

p
mB ø a to recombine. The imaginary three-body

coefficient accounts collectively for recombination into all
deep bound states. It could in principle be calculated if the
two- and three-body potentials describing the interactions
between atoms were known with sufficient accuracy. In
practice, it has to be determined from experimental data.
Once this parameter is fixed, the dependence of aD on a
and L� can be predicted.

In Ref. [7], we have calculated aS for a large, positive
scattering length a. In the following, we extend this work
to calculate aD for large a of either sign. For simplicity,
we now set h̄ � 1. We start with a local Lagrangian for a
nonrelativistic boson field c and an auxiliary field d with
the quantum numbers of two bosons [7,9]:

L � cy

µ
i

≠

≠t
1

�=2

2m

∂
c 1 dyd

2
g
p

2
�dycc 1 cycyd�

1 �h 1 ih0�dydcyc 1 . . . , (2)

where h0 is the free parameter accounting for recombi-
nation into the deep states. The dots denote terms that
are suppressed at low energy. The couplings g and h
in Eq. (2) can be eliminated in favor of a and L�, re-
spectively. The atom propagator has the usual nonrela-
tivistic form i��v 2 p2�2m�. The two-atom scattering
amplitude for incoming atoms with momenta 6 �k has the
form �21�a 2 ik�21. The exact propagator for d has a
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pole at v � 21��ma2� 1 �p2��4m� corresponding to the
shallow bound state [7,9].

Before describing the calculation of aD , we summa-
rize the calculation of aS in Ref. [7]. The coefficient
for recombination into the shallow bound state can be ex-
pressed as aS � 512p2jt�pf�j2��

p
3 m�, where t�p� is

the amplitude for the transition between three atoms at
rest and a final state consisting of an atom and a shal-
low s-wave state with momentum p in their center-of-
momentum frame. This amplitude is evaluated on shell
at the value pf � 2��

p
3 a� prescribed by energy conser-

vation. However, t�p� is also defined at off-shell values
of p as the solution of an integral equation that contains
the two- and three-body interaction terms [7]. The inte-
gral equation is regularized by a momentum cutoff L. All
observables can be made independent of the cutoff by ad-
justing the three-body coefficient h�L� as a function of L.
The evolution of h with L approaches a limit cycle: L2h
varies periodically between 1` and 2` as L increases
by multiplicative factors of exp�p�s0� � 22.7 [9]. Since
all observables are cutoff independent, we can choose a L

for which h�L� � 0. The three-body parameter L� then
appears in the upper limit of the integral and we obtain a
renormalized equation [11],

t�p� �
2

p2
1

2
p

Z Ln

0

dq q2t�q�
21�a 1

p
3 q�2 2 ie

3
1

pq
ln

Ç
q2 1 pq 1 p2

q2 2 qp 1 p2

Ç
, (3)

with Ln � L� exp��np 1 arctan�1�s0���s0	 and s0 �
1.0064. The integer n should be large enough that errors
of O ���1��Lna���� can be neglected. In practice, one can
often choose n � 1. Solving the integral equation for
t�p� and evaluating the solution as described above, we
obtain the result in Eq. (1). The integral equation (3) also
has a solution for a , 0, but there is no shallow bound
state in this case and aS � 0.

In order to describe the recombination into the deep
bound states, we use the optical theorem as discussed
above and include an imaginary part h0 in the coefficient
of the three-body contact interaction. We assume that the
h0 term can be treated as a perturbation at first order. How-
ever, the external legs have to be dressed with initial and
final state interactions to all orders. We have to calculate
the diagrams shown in Fig. 1(b), where the blob represents
the solution of Eq. (3) and the triangle represents an inser-
tion of ih0. This leads to

aD �
288p2a2

m

h1

L2
n

3

Ç
1 1

2
p

Z Ln

0

dq q2t�q�
21�a 1

p
3 q�2 2 ie

Ç2
, (4)

where we have defined h0��mg2� � h1�L2
n. Equation (4)

gives a renormalized expression for aD up to corrections
of O ���1��Lna����. Since t�q� is known numerically from
160407-2
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solving Eq. (3), the calculation of aD entails the numerical
evaluation of the integral in Eq. (4).

There are now two cases to consider: a . 0 and a , 0.
We first consider the case a . 0. Evaluating Eq. (4), we
find that the amplitude is dominated by a linear divergence
in the integral and is proportional to Lna. The factors of
Ln cancel and the result is proportional to a4 with a coef-
ficient that, within the numerical accuracy, is independent
of L�a:

aD � 0.041h1
h̄a4

m
�a . 0� . (5)

In Fig. 2(a), we show both aS and aD for a . 0, with h1
adjusted such that aD � 10. The recombination into the
deep bound states fills in the zeros of aS, so that they
become at best local minima of the recombination rate.

We now turn to the more interesting case a , 0. Evalu-
ating Eq. (4), we find that the amplitude is again dominated
by a linear divergence in the integral. However, the coef-
ficient of a4�m is not a pure number but exhibits scaling
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FIG. 2. The recombination coefficients aD (solid line) and
aS (dashed line) as functions of jajL� for a . 0 and a , 0.
The free parameter h1 in aD was chosen such that aD � 10
for a . 0.
160407-3
violations. aD has the remarkable dependence on L�jaj
shown in Fig. 2(b). The coefficient diverges at a sequence
of values of L�jaj that are equally spaced on a logarithmic
scale. To a high numerical accuracy, the results can be de-
scribed by the formula

aD �
5.61h1

sin2�s0 ln�L�jaj� 1 1.77�
h̄a4

m
�a , 0� . (6)

The oscillatory dependence on lnjaj is in accord with a
general scaling law by Efimov [12]. There are divergences
whenever s0 ln�L�jaj� 1 1.77 is an integer multiple of p.
They occur because a three-body Efimov state [12] has
been tuned to threshold by the variation of a. The diver-
gences are artifacts of first-order perturbation theory in h1,
which treats the Efimov states below the three-body thresh-
old as having sharp energies. However, these Efimov states
acquire a width that depends on h1 from decay into the
deep two-body state and an atom [13]. This will change
the divergences into resonances at which aD is enhanced
by a factor �h̄2�Gma2�2, where G is the width of an Efimov
state at the three-body threshold. First-order perturbation
theory in h1 is justified if G ø h̄2��ma2�, except within
G of a resonance. The determination of the height of the
resonance peaks requires a calculation that is nonperturba-
tive in h1. Elastic three-atom scattering will also exhibit
these resonances if a , 0. For a . 0, an Efimov state
at the three-body threshold has a width of order h̄2��ma2�
from decay into the shallow two-body bound state, so there
should be no resonances in a.

The EFT results for a depend on two parameters L� and
h1 that are determined by interatomic interactions at dis-
tances much smaller than jaj. They have predictive power
only if a can be varied as a function of some external pa-
rameter and if the dependence of L� and h1 on that parame-
ter is known. One case in which there is predictive power
is near a Feshbach resonance, where a is varied by tuning a
molecular bound state close to the threshold of two atoms
by using an external magnetic field B. Since the parameters
in L take into account short-distance physics that depends
very smoothly on B, they must be smooth functions of B.
Over the narrow interval of a Feshbach resonance, they can
be approximated by linear or even constant functions of B.
Linear dependence of the short-distance parameter g in (2)
corresponds to a�B� � a0�1 1 D��B0 2 B��, where a0 is
the off-resonant scattering length and D is the width of the
Feshbach resonance. The fact that h and h0 in (2) vary
smoothly with B implies that L� and h1 should also vary
smoothly and therefore can be approximated by constants
near the resonance at B0 [7].

In Fig. 3 we compare our theory with measurements of
the atom loss rate coefficient K3 � 3a in an ultracold gas
of 85Rb atoms by Roberts et al. [2]. In 85Rb, there is a
Feshbach resonance with width D � 11.5 G at a magnetic
field B0 � 155.2 G [2]. In Fig. 3, the scattering length is
negative below the Feshbach resonance at B0 � 155.2 G
and positive above. Consequently, the shallow bound state
160407-3
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FIG. 3. The atom loss rate K3 � 3a for a gas of ultracold
85Rb atoms. The dots (triangles) represent data (upper bounds)
for K3 from Ref. [2]. The EFT predictions for K3S (solid
lines) and K3D (dashed lines) are shown for L� � 5�a.u. (black
curves) and L� � 20�a.u. (grey curves). The arbitrary normal-
ization factor in K3D is set to h1 � 24.7.

contributes to K3 only above the resonance. The free pa-
rameter h1 � 24.7 has been fixed to reproduce the overall
magnitude of K3 below the resonance. For a . 0, this
value of h1 leads to a contribution of the deep bound states
to the loss rate (K3D) that is much smaller than the con-
tribution of the shallow bound state (K3S) except near the
minima of K3S. One might be able to determine h1 experi-
mentally from the depth of these minima. In Fig. 3, we
have plotted K3D and K3S for two values of the three-body
parameter: L� � 5�a.u. and L� � 20�a.u. The parame-
ter L� would be determined very accurately if a local mini-
mum or maximum in the loss rate were observed.

A resonance in the three-body recombination rate for
a , 0 has been observed previously by Esry et al. [6].
They calculated a numerically for various two-body po-
tentials with a single bound state (either shallow or deep).
They varied a from large negative values to large positive
values by tuning the depth of the potential. For a . 0,
a�a4 increases to a maximum at some value amax and
then decreases to an interference minimum as predicted
by Eq. (1). For a , 0, a�a4 has a resonance at some
value ares. The ratio jaresj�amax ranged from 1.6 to 2 for
the potentials studied. Since the maxima of aS�a4 and the
divergences of aD�a4 in Fig. 2 appear at the same values
of jaj, the EFT predicts jaresj�amax � 1 to leading order
in h1. The discrepancy between the results of Ref. [6] and
the EFT prediction can be explained by a variation in the
parameters L� and h1 as the depth of the potential is tuned
to vary a. Near a Feshbach resonance, the short-distance
behavior of the potential is essentially unchanged as B is
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varied. Thus L� and h1 should be nearly constant and the
EFT prediction should hold as long as jaj is much larger
than its off-resonance value.

We have shown that the EFT approach to the three-body
system with large scattering length can be applied to
recombination into deep bound states. For a . 0, this
contribution fills in the interference minima of the re-
combination rate into shallow bound states, transforming
them into local minima of the total recombination rate.
For a , 0, the EFT approach confirms the conjecture of
Ref. [6] that the recombination rate for zero-momentum
atoms should exhibit resonances due to Efimov states at
a sequence of values for a that differ by multiplicative
factors of exp�p�s0� � 22.7. Provided the widths of
these Efimov states are numerically small compared
to h̄2��ma2�, the resonances should be observable as
sharp peaks in the recombination rate near a Feshbach
resonance.
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