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Exploring Phase Coherence in a 2D Lattice of Bose-Einstein Condensates
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Bose-Einstein condensates of rubidium atoms are stored in a two-dimensional periodic dipole force
potential, formed by a pair of standing wave laser fields. The resulting potential consists of a lattice
of tightly confining tubes, each filled with a 1D quantum gas. Tunnel coupling between neighboring
tubes is controlled by the intensity of the laser fields. By observing the interference pattern of atoms
released from more than 3000 individual lattice tubes, the phase coherence of the coupled quantum gases
is studied. The lifetime of the condensate in the lattice and the dependence of the interference pattern
on the lattice configuration are investigated.
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The physics of Bose-Einstein condensation is governed
by a hierarchy of energy scales. The lowest energy is usu-
ally the atomic oscillation frequency in the trap which is
much smaller than the chemical potential of the conden-
sate. Here we report on experiments in which we enter a
regime where this order is inverted. By overlapping two
optical standing waves with the magnetically trapped con-
densate we create a two-dimensional periodic lattice of
tightly confining potential tubes. In each of the several
thousand tubes the chemical potential is far below the trap-
ping frequencies in the radial direction. The radial motion
of the atoms is therefore confined to zero point oscillations,
and transverse excitations are completely frozen out. In
the degenerate limit, these 1D quantum gases are expected
to show a remarkable physics not encountered in 2D and
3D, for instance, a continuous crossover from bosonic to
fermionic behavior as the density is lowered [1–5].

In our two-dimensional periodic array of quantum gases
the tunnel coupling between neighboring lattice sites is
controlled with a high degree of precision by changing
the intensity of the optical lattice beams. A similar con-
trol over coupling between adjacent pancake-shaped con-
densates was achieved in recent experiment using a single
standing wave laser field [6,7]. After suddenly releasing
the atoms from the trapping potential we observe the mul-
tiple matter wave interference pattern of several thousand
expanding quantum gases. This allows us to study the
phase coherence between neighboring lattice sites, which
is remarkably long lived. Even for long storage times,
when the phase coherence between neighboring lattice
sites is lost and no interference pattern can be observed
anymore, the radial motion of the atoms remains confined
to zero point oscillations.

Similar to our previous work [8], almost pure Bose-
Einstein condensates with up to 5 3 105 87Rb atoms are
created in the jF � 2, mF � 2� state. The cigar-shaped
condensates are confined in the harmonic trapping poten-
tial of a QUIC trap (a type of magnetic trap that incor-
porates the quadrupole and Ioffe configuration) [9] with
an axial trapping frequency of 24 Hz and radial trapping
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frequencies of 220 Hz. The lattice potential is formed by
overlapping two perpendicular optical standing waves with
the Bose-Einstein condensate as shown in Fig. 1. All lat-
tice beams are derived from the output of a laser diode
operating at a wavelength of l � 852 nm and have spot
sizes w0 (1�e2 radius for the intensity) of approximately
75 mm at the position of the condensate. The resulting
potential for the atoms is directly proportional to the in-
tensity of the interfering laser beams [10], and for the case
of linearly polarized light fields it can be expressed by

U� y, z� � U0� cos2�ky� 1 cos2�kz�
1 2e1 ? e2 cosf cos�ky� cos�kz�� . (1)

Here U0 describes the potential maximum of a single
standing wave, k � 2p�l is the magnitude of the wave
vector of the lattice beams, and e1,2 are the polarization
vectors of the horizontal and vertical standing wave laser
fields, respectively. The potential depth U0 is conveniently
measured in units of the recoil energy Er � h̄2k2�2m,
with m being the mass of a single atom. The time-phase
difference between the two standing waves is given by the

FIG. 1. Schematic setup of the experiment. A 2D lattice poten-
tial is formed by overlapping two optical standing waves along
the horizontal axis ( y axis) and the vertical axis (z axis) with a
Bose-Einstein condensate in a magnetic trap. The condensate is
then confined to an array of several thousand narrow potential
tubes (see inset).
© 2001 The American Physical Society 160405-1



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
variable f [11]. In our setup this time phase is measured
interferometrically and controlled with a piezomounted
mirror and a servoloop. Furthermore, the intensity of the
lattice beams is stabilized in order to ensure a constant po-
tential depth during our measurements. The intensity pat-
tern in the y-z plane extends along the x direction, such that
the resulting potential can be viewed as a lattice of narrow
tubes with a spacing of l�2 between neighboring lattice
sites. These tubes provide a tight harmonic confinement
along the radial direction which leads to large trapping fre-
quencies vr � h̄k

p
2U0�m. In our setup potential depths

of up to 12Er are reached, resulting in a maximum radial
trapping frequency of vr � 2p 3 18.5 kHz. The confine-
ment along the symmetry axis of a single tube is determined
by the harmonic confinement of the magnetic trap and the
confinement due to the Gaussian intensity profile of the lat-
tice laser beams. The trapping frequency along the symme-
try axis of a single lattice tube can be varied between vax �
2p 3 10 300 Hz. The spontaneous scattering rate due to
the lattice laser light is always less than Gsc � 0.06 s21

and therefore negligible for our measurement times.
In order to transfer the atoms into the lattice potential,

the laser power of the lattice beams is gradually increased in
a linear ramp to its final strength within 40 ms. The atoms
are then held for a variable amount of time in the combined
potential of the interfering laser beams and the magnetic
trap. The number of occupied lattice sites can be estimated
by counting the number of lattice sites within the Thomas-
Fermi extension of the magnetically trapped condensate.
For the above parameters we find that up to 3000 lattice
sites are populated, with an average population of N̄i �
170 atoms per lattice site.

When the atoms are released from the combined poten-
tial of the optical lattice and the magnetic trap, the conden-
sate wave functions on different lattice sites expand and
interfere with each other. This interference pattern is im-
aged after a fixed expansion time using absorption imag-
ing, with the imaging axis oriented along the x axis and
positioned parallel to the symmetry axis of the individual
lattice tubes. The results are displayed in Fig. 2 for a
2D-lattice potential with a maximum potential depth of

(a) (b)2 hk

FIG. 2. (a) Average over 5 absorption images of released Bose-
Einstein condensates that were stored in a 2D optical lattice
potential. The maximum potential depth of the lattice was 12Er
and the ballistic expansion time was set to 12 ms. (b) Schematic
image showing the expected discrete momentum states and the
possible s-wave scattering spheres. Higher order momentum
components (e.g., 4h̄k) are also visible in (a).
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12Er and orthogonal polarization vectors e1 ? e2 � 0. In
comparison, Fig. 3 shows the results for three different po-
tential depths of the optical lattice and 1D vertical (z axis),
1D horizontal ( y axis), and 2D vertical1horizontal lattice
configurations (orthogonal polarization vectors e1 ? e2 �
0). Several important features can be seen on these images.
First, discrete interference maxima are visible that are ar-
ranged in a regular structure. These interference maxima
not only require a periodic density modulation of the atoms
but also phase coherence of the condensate wave func-
tion throughout the lattice. They directly reveal the mo-
mentum distribution of the atoms in the lattice. Second,
s-wave scattering spheres [12,13] become more visible as
the higher order momentum components are more strongly
populated with increasing potential depth. These scattering
spheres occur due to collisions between atoms in the sepa-
rating momentum components after the trapping potential
is switched off. The collision probability between atoms in
the horizontal momentum components jpyj � 2h̄k and the
jpj � 0 momentum component is high, due to the large ex-
tension of the condensate in the horizontal direction. This
yields long interaction times and thus a high scattering
probability. Along the vertical direction, the size of the
condensate is almost an order of magnitude smaller and
the interaction times are correspondingly shorter, result-
ing in a much lower scattering probability. Furthermore,
s-wave scattering spheres can also be seen in the diago-
nal direction due to collisions between the diagonal mo-
mentum components and the central p � 0h̄k momentum
component. For a maximum trapping depth of 12Er all
of these eight scattering spheres [see Fig. 2(b)] are clearly
visible in Fig. 2(a). For the parameters used in our experi-
ment the photon scattering rate is 2 orders of magnitude

(a) (b) (c)
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FIG. 3. Absorption images of Bose-Einstein condensates re-
leased from optical lattices of different geometry and intensity.
Top row: One-dimensional lattice oriented vertically. Middle
row: One-dimensional lattice oriented horizontally. Bottom row:
Two-dimensional lattice oriented along the vertical and horizon-
tal direction. The images were taken for peak optical lattice
depths of (a) 4Er , (b) 8Er , and (c) 12 Er .
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below that in Ref. [14], so that superradiant effects should
not occur. Because of the symmetry of our standing wave
field we do not expect additional momentum components
to be generated by four-wave mixing [15].

The wave function of the Bose-Einstein condensate in
the optical lattice can be expressed as a sum of localized
wave functions on each lattice site. Such a localized wave
function is described by a Gaussian wave function for the
ground state of the tightly confining radial axis of a single
lattice tube, with radial widths as low as 90 nm. Along the
weakly confining axis of a lattice tube, the repulsive inter-
actions between the atoms result in a parabolic Thomas-
Fermi profile with a maximum radial width of �5mm. The
maximum chemical potential per lattice tube of m � h 3

6 kHz is then much smaller than the radial energy level
spacing, confining the radial atomic motion to zero point
oscillations.

In addition to a strong dependence of the visibility of the
higher order momentum components on the localization of
the wave function, we find a suppression of momentum
components due to structural properties of the optical lat-
tice. For a lattice configuration with orthogonal polariza-
tion vectors between the two standing waves for which the
last term in the sum of Eq. (1) vanishes [see Fig. 4(a)], the
first order diagonal momentum components with jpj �p

2 h̄k are completely suppressed, as can be seen in
Fig. 4(b). This is caused by a destructive interference
between matter waves emitted from neighboring diagonal
lattice planes and results in a vanishing geometrical struc-
ture factor of these momentum components [16]. If the lat-
tice configuration is changed to parallel polarization vectors
between the two standing waves, such that e1 ? e2 � 1,
and the time phase is set to f � 0, the last term in Eq. (1)
modifies the geometry of the lattice [see Fig. 4(c)]. For
this lattice configuration the geometrical structure factor
for the diagonal momentum components with jpj �p

2 h̄k does not vanish, and these components are clearly
visible in the experiment [see Fig. 4(d)].

(a)

(b)

(c)

(d)
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FIG. 4. Influence of the lattice configuration on the momentum
distribution. For an optical lattice of (a) with orthogonal polariza-
tion vectors e1 ? e2 � 0 the first diagonal momentum orders with
jpj �

p
2 h̄k are suppressed (b) due to their vanishing geometri-

cal structure factor. In contrast, if e1 ? e2 � 1 and f � 0 as in
(c), the resulting geometrical structure factor does not vanish for
these momentum components and they are strongly visible (d).
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We determine the lifetime of the condensate in the op-
tical lattice by measuring the number of condensed atoms
after ramping down the lattice potential. The following
experimental sequence is used. The lattice is ramped up
to its final strength within 40 ms and then the atoms are
held for a variable period of time in the lattice potential.
Subsequently, the lattice potential is ramped down within
40 ms and the remaining number of condensed atoms is
measured using absorption imaging after a ballistic expan-
sion. The slow ramp speed ensures that the many-body
wave function adjusts adiabatically to the changing optical
potential. The results of these measurements are displayed
in Fig. 5 for a lattice configuration with orthogonal po-
larization vectors e1 ? e2 � 0 [see Fig. 4(a)]. The reduc-
tion of the lifetime of the condensate due to the presence
of the optical lattice is shown for three different potential
depths. We believe that this reduced lifetime is caused by
residual fluctuations of the lattice potential which lead to
a dephasing of neighboring condensates with time. In a
deep potential the dephasing occurs faster due to the re-
duced tunnel coupling. This may also be considered in a
band structure picture, where the width of the energy bands
decreases strongly with increasing potential depth, so that
the system becomes more susceptible to perturbations. As
a result, transitions within a single band may occur; i.e.,
the atoms remain within the ground state of a single lat-
tice site, but no longer exhibit phase coherence to neigh-
boring sites. The dephased Bose-Einstein condensates are
not expected to recombine into a single condensate when
the optical lattice potential is turned off adiabatically. We
identify this as the major contribution to the observed de-
crease in condensate fraction with increasing storage time.
We have also verified that the remaining condensate frac-
tion and the interference pattern after a sudden switch-off
vanish for the same parameters and holding times. Be-
cause of the background of atoms which undergo s-wave
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FIG. 5. Remaining number of condensed atoms after a variable
hold time in the combined potential of the magnetic trap and
the lattice potential (open data points) and in a pure magnetic
trapping potential (solid diamonds). The maximum potential
depth of the lattice was 4Er (open triangles), 8Er (open circles),
and 12Er (open diamonds), respectively.
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.
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In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.
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