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Simulations of Bose Fields at Finite Temperature
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We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed
homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to
equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of
Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine
a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect
that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly
occupied. Our method could be applied to other boson fields.
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The achievement of Bose-Einstein condensation (BEC)
in a dilute gas offers the possibility of studying the dynam-
ics of a quantum field at finite temperatures in the labora-
tory [1,2]. However, direct numerical simulation of the full
equations of motion for such systems is well beyond the
capability of today’s computers. Even equilibrium calcu-
lations in the region of a phase transition require nonper-
turbative methods, meaning that fully quantal treatments
are unfeasible.

At finite temperature, when there are an appreciable
number of noncondensed particles, the fully quantal sec-
ond order theory of Morgan [3] (and other equivalent treat-
ments [4,5]) should be sufficient for an accurate description
of many properties of the dilute Bose gas in equilibrium
and away from the region of critical fluctuations. Dynami-
cal treatments are much harder, and in general require sig-
nificant approximations. For example, calculations have
been performed for small systems [6], with a restricted
number of modes [7], and for the dynamics of conden-
sate formation where the ground state is assumed to grow
adiabatically [8].

The Gross-Pitaevskii equation (GPE) has been used to
predict the properties of condensates near T � 0, when
there are very few noncondensate atoms present. Both stat-
ically and dynamically it has shown excellent agreement
with experiment [9–11]. It has been argued, however, that
the GPE can be used to describe the dynamics of a BEC at
finite temperature [12–14]. In the limit where the modes
of the system are highly occupied �Nk ¿ 1�, the classical
fluctuations of the field overwhelm the quantum fluctua-
tions, and these modes may therefore be represented by a
coherent wave function. This is analogous to the situation
in laser physics, where the highly occupied laser modes
can be well described by classical equations.

Using this argument, Damle et al. have performed cal-
culations of the approach to equilibrium of a near ideal su-
perfluid [15], and similar approximations to other quantum
field equations have been successful elsewhere [16]. Ref-
erences [17–19] also use the GPE to represent the classical
modes of a Bose-condensed system. The main advantage
of this method is that realistic calculations, while still a ma-
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jor computational issue, are feasible—methods for solving
the GPE are well developed. Also, as the GPE is nonper-
turbative it should be possible to study the region of the
phase transition,aslongasthe condition Nk ¿ 1 is satisfied.

There are, however, problems associated with the GPE.
It is a classical equation, and so in equilibrium it will
satisfy the equipartition theorem—all modes of the system
will contain an energy kBT . Thus, if we couple a system to
a heat bath, and solve the equation with infinite accuracy,
we will observe an ultraviolet catastrophe. Also, the higher
the energy of any given mode, the lower its occupation will
be in equilibrium, and eventually the criterion Nk ¿ 1 will
no longer be satisfied. For these low occupation modes a
form of kinetic equation is more appropriate. The solution
to both of these problems is to introduce a cutoff in the
modes represented by the GPE.

Our theoretical approach begins with the full operator
equation for the Bose field with two-body interactions

ih̄
≠Ĉ�r�

≠t
� Ĥ0Ĉ�r� 1 U0Ĉy�r�Ĉ�r�Ĉ�r� , (1)

where U0 � 4p h̄2a�m is the effective interaction strength
at low momenta, a is the s-wave scattering length, and
m is the particle mass. The route to the usual GPE is to
assume that the full field operator can be replaced by a
wave function c�r�—i.e., that all quantum fluctuations can
be neglected. We proceed instead by defining a projection
operator P̂ such that

P̂ Ĉ�r� �
X

k[C

âkfk�r� , (2)

where the region C is determined by the requirement that
�ây

kâk� ¿ 1, and the set �fk� defines some basis in which
the field operator is approximately diagonal at the bound-
ary of C. For these modes, the quantum fluctuation part
of the projected field operator can be ignored, and so we
replace âk ! ck and write

c�r� �
X

k[C

ckfk�r� . (3)

Defining the operator Q̂ � '̂ 2 P̂ and Q̂Ĉ�r� �
ĥ�r�, operating on Eq. (1) with P̂ and taking the mean
value results in what we call the finite temperature GPE
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ih̄
≠c�r�

≠t
� Ĥ0c�r� 1 U0P̂ �jc�r�j2c�r�� 1 U0P̂ �2jc�r�j2�ĥ�r�� 1 c�r�2�ĥy�r���

1 U0P̂ �c��ĥĥ� 1 2c�ĥyĥ� 1 �ĥyĥĥ�� . (4)
This describes the full dynamics of the region C and its
coupling to an effective heat bath ĥ�r�, which in prin-
ciple can be described using a form of quantum kinetic
theory. The finite temperature GPE is discussed in detail
in Ref. [20].

In this Letter, however, we wish to show that the GPE
alone can describe the evolution of general configurations
of the coherent region C towards an equilibrium that can
be parametrized by a temperature. We therefore ignore all
terms involving ĥ�r� in Eq. (4) and concentrate on the first
two terms of the first line, which we call the projected GPE.
Although this equation is both unitary and reversible, we
expect it to evolve general states to equilibrium, because
deterministic nonlinear systems exhibit chaotic, and hence
ergodic, behavior if more than a few degrees of freedom
are present [21]. This is confirmed by our numerical simu-
lations and forms the main result of this Letter.

The projected GPE describes a microcanonical system.
However, if the region C is large, then fluctuations in en-
ergy and particle number in the grand canonical ensemble
would be small. Hence we expect the final equilibrium
state of the projected GPE to be similar to that of the finite
temperature GPE coupled to a bath ĥ�r� with the appro-
priate chemical potential and temperature. This does not
affect the main result of this Letter, however, which is sim-
ply that equilibrium is attained. The detailed nonequilib-
rium dynamics of the system will depend on the exchange
of energy and particles between C and the bath, and this
will be addressed in future work.

We have performed simulations for a fully three-
dimensional homogeneous Bose gas with periodic bound-
ary conditions. This choice has been made to simplify the
projection operation that must be carried out. In this case
the single particle states are plane waves, and the effect
of a condensate is simply to mix modes of momenta p
and 2p. This allows us to apply the projector cleanly
in momentum space, which is easily accessible by fast
Fourier transform. In principle there is no barrier to
performing the same computation in a trap — in practice
the projection operation is much more time consuming.

The dimensionless equation we compute is

i
≠c�r̃�

≠t
� 2=̃2c�r̃� 1 CnlP̂ jc�r̃�j2c�r̃� , (5)

where we have defined
R

d3r̃ jc�r̃�j2 � 1. The non-
linear constant is Cnl � 2mNU0�h̄2L, where N is the total
number of particles in the volume, and L is the period of
the system. Our dimensionless parameters are r̃ � r�L,
wave vector k̃ � kL, energy ˜́ � ´�´L, and time
t � ´Lt�h̄, with ´L � h̄2��2mL2�.

The calculations presented here have been performed
with Cnl � 2000, and the projector P̂ chosen such that
all modes have jkj , 15 3 2p�L. This means that a
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large number of the states contained in the calculation are
phononlike for large condensate fraction. We note that
while the number of states in the problem is fixed, the
nonlinear constant determines only the ratio of NU0�L.
This means that for a given value of Cnl, we are free to
choose N , U0, and L such that our condition jckj

2 ¿ 1
is always satisfied for a given physical situation. In
particular, we can choose 87Rb atoms with N � 5 3 105

and L � 17 mm to give a number density of about
1014 cm23—similar parameters to current experiments in
traps.

We begin our simulations with wave functions far from
equilibrium with a chosen total energy Ẽ. They have a
flat distribution in k space out to some maximum momen-
tum determined by Ẽ, and the phase of each momentum
component is chosen at random. These initial states are
then evolved for a time period of t � 0.4, by which stage
equilibrium appears to have been reached. We determine
the properties of the system at equilibrium by assuming
that the ergodic theorem applies, and time averaging over
50 wave functions from the last dt � 0.1 of the simula-
tion. We find that the equilibrium properties depend only
on the total energy— they are independent of the details
of the initial wave function.

Strong evidence that the simulations have reached equi-
librium is given by the time dependence of the condensate
population. For all energies this settles down to an average
value that fluctuates by a small amount, and the results are
presented in Fig. 1. Further support is provided by the dis-
tribution of the particles in momentum space. Rather than
using the plane-wave basis, we transform the wave func-
tions into the quasiparticle basis of quadratic Bogoliubov
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FIG. 1. Condensate fraction plotted against total energy after
each individual simulation has reached equilibrium. The barely
discernible vertical lines on each point indicate the magnitude
of the fluctuations.
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theory, the sole parameters of the transformation being the
condensate fraction and the nonlinear constant Cnl . We
then average the populations of the quasiparticles states
over time and angle to produce a one-dimensional plot,
and the results are shown in Fig. 2.

The GPE is the high occupation limit of the full equation
for the Bose field operator. Therefore, in equilibrium we
expect the mean occupation of the quasiparticle mode k to
be the classical limit of the Bose-Einstein distribution—
i.e., the equipartition relation

�Nk� �
kBT

´k 2 m
. (6)

Since we can determine the Bogoliubov occupation �Nk�
from our simulation data, we can attempt to fit this distri-
bution to a dispersion relation for ´k , and hence determine
the temperature.

In the limit of large condensate fraction �N0��N 	 1,
we expect the Bogoliubov dispersion relation to be a good
estimate of the energies. The Bogoliubov transformation
approximates the many-body Hamiltonian by a quadratic
form, which can be diagonalized exactly. The eigenstates
are quasiparticles, and in our dimensionless units the dis-
persion relation takes the form

˜́ k �

µ
k̃4 1 2Cnl

�N0�
N

k̃2
∂1�2

. (7)

Manipulating Eq. (6) and measuring the excitation spec-
trum relative to the condensate we find

˜́k

T̃
�

µ
N

�Nk�
2

N
�N0�

∂
, (8)

where T̃ � kBT��N´L� is our dimensionless temperature,
and the second term on the right-hand side (RHS) arises
from the difference between the condensate energy and
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FIG. 2. Plots of the equilibrium Bogoliubov quasiparticle dis-
tributions averaged over time and angle for four different to-
tal energies. Squares, Ẽ � 1600; crosses, Ẽ � 2000; circles,
Ẽ � 3200; dots, Ẽ � 4600. The mean condensate occupation
for all four distributions is off axis.
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the chemical potential of the system. By comparing the
curve of this relation with that of Eq. (7), a temperature
can be determined. For the Ẽ � 1400 simulation we find
T̃ � 0.0284 gives an excellent fit, and this is shown in
Fig. 3. At higher simulation energies, however, the shape
of Eq. (8) no longer agrees with Eq. (7) and we must use a
more sophisticated theory to predict the dispersion relation.

As the occupation of the quasiparticle modes becomes
significant (in this case more than a few percent), the cu-
bic and quartic terms of the many-body Hamiltonian that
were neglected in the Bogoliubov transformation become
important. In Ref. [3] Morgan develops a consistent ex-
tension of the Bogoliubov theory to higher order that leads
to a gapless excitation spectrum. This theory treats the
cubic and quartic terms of the Hamiltonian using pertur-
bation theory in the quasiparticle basis. Expressions for
the energy shifts of the excitations are given in Sec. 6.2 of
Ref. [3], and we have calculated these shifts for our simu-
lations, with typical results plotted in Fig. 4.

The energy spectrum predicted by the second order the-
ory for the Ẽ � 4000 simulation is in good agreement with
the quasiparticle populations extracted from the simula-
tions and is a significantly better fit than the Bogoliubov
theory of Eq. (7). The validity of the second order theory
is constrained by the requirement [3]µ

kBT

n0U0

∂
�n0a3�1�2 ø 1 , (9)

where n0 is the condensate density. For the results of
Fig. 4 with Ẽ � 4000, this parameter is 0.14 and so we
are beginning to probe the boundary of validity of the
theory. At higher Ẽ the shifts it predicts at low k are of the
order of the unperturbed energies, and the results become
unreliable. In this region higher order terms are important
and the second order theory can no longer be expected to
give good results.
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FIG. 3. Comparison of dispersion relations for Ẽ � 1400 with
�N0��N � 0.912. The dots are a plot of the RHS of Eq. (8),
and the lines plot ˜́k�T̃fit. The solid line is for the Bogoliubov
dispersion relation with T̃fit � 0.0284, while the dashed line is
for the ideal gas with T̃fit � 0.0223.
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FIG. 4. Comparison of dispersion relations for Ẽ � 4000 with
�N0��N � 0.279. The dots are a plot of the RHS of Eq. (8) and
the lines plot ˜́k�T̃fit. The dashed line is for the Bogoliubov
dispersion relation with T̃fit � 0.193, and the solid line is for
the second order theory of Ref. [3] with T̃fit � 0.201.

In summary for the system with Cnl � 2000, Bogoli-
ubov theory gives a good prediction of the energy spec-
trum for simulations with total energies Ẽ # 1600, while
the predictions of second order theory are good up until
about Ẽ � 4000. We would like to point out, however,
that as the GPE is nonperturbative we expect it will be
valid up to and beyond the transition region as long as the
condition Nk ¿ 1 is satisfied.

In addition to the results described above, we have also
run simulations with Cnl � 10 000 and carried out an iden-
tical analysis. We have found that the results from evolving
the GPE are qualitatively the same, and for very large con-
densate fractions Bogoliubov theory accurately predicts
the energy spectrum accurately. However, it appears that
the second order theory develops a gap in the energy spec-
trum in systems with a momentum cutoff. This feature is
yet to be understood.

In this Letter we have presented results for some of the
equilibrium properties of the homogeneous gas. Other
properties such as fluctuations and coherence lengths, as
well as the nonequilibrium dynamics, will be considered
elsewhere. We would like to emphasize that this method
relies on the lowest energy modes of the system being
classical in nature, and thus cannot handle situations where
strong quantum fluctuations are important.

In conclusion, we have presented evidence that the pro-
jected Gross-Pitaevskii equation is a good approximation
to the classical modes of a Bose gas. We have described
160402-4
how to carry out the projection technique in the homoge-
neous case with periodic boundary conditions, and have
shown that starting with a randomized wave function with
a given energy, the projected GPE evolves towards an equi-
librium state. We have analyzed the numerical data in
terms of the gapless, finite temperature theory of Ref. [3]
in the classical limit, and found that both the occupation
and energies of the quasiparticles agree quantitatively with
the predictions.
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