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Kondo Correlations and the Fano Effect in Closed Aharonov-Bohm Interferometers

Walter Hofstetter,1 Jürgen König,2,3 and Herbert Schoeller4

1Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universität Augsburg, D-86135 Augsburg, Germany
2Department of Physics, The University of Texas at Austin, Austin, Texas 78712

3Institut für Theoretische Festkörperphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
4Theoretische Physik A, Technische Hochschule Aachen, D-52056 Aachen, Germany

(Received 25 April 2001; published 25 September 2001)

We study the Fano-Kondo effect in a closed Aharonov-Bohm (AB) interferometer which contains a
single-level quantum dot and predict a frequency doubling of the AB oscillations as a signature of Kondo-
correlated states. Using the Keldysh formalism, the Friedel sum rule, and the numerical renormalization
group, we calculate the exact zero-temperature linear conductance G as a function of the AB phase w

and level position e. In the unitary limit, G�w� reaches its maximum 2e2�h at w � p�2. We find a
Fano-suppressed Kondo plateau for G�e� similar to recent experiments.
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Introduction.—Recent measurements of transport
through small semiconductor quantum dots have revealed
interesting quantum-coherence phenomena such as the
Kondo effect [1–4] in quantum dots strongly coupled
to leads, Aharonov-Bohm (AB) oscillations [5] of the
current through multiply connected geometries containing
quantum dots, and Fano-type line shapes in multichannel
transport situations [6]. In this Letter, we study the
combination of all these effects in an AB geometry which
contains a spin-degenerate single-level quantum dot (see
Fig. 1).

Interference between resonant transport through the
quantum dot and the direct channel gives rise to asym-
metric line shapes in the linear conductance as a function
of gate or bias voltage, the well-known Fano effect [7].
Such line shapes have been observed recently in linear
transport through multilevel quantum dots [6], where
the nature of the direct (“reference”) transmission path
has not yet been fully clarified. Furthermore, scanning
tunneling microscopy measurements of magnetic atoms
on gold surfaces [8] yielded Fano line shapes in the
tunneling density of states, which have been successfully
explained theoretically [9] under the assumption that only
conduction electrons participate in tunneling. The setup
we propose (see Fig. 1) has, however, the advantage that a
controlled separate manipulation of both interfering paths
is possible. Enhanced AB oscillations due to the Kondo
effect at low temperature were predicted [10] for a similar
geometry.

Here, we define two precise criteria for detecting Kondo
correlations in a closed geometry. The first one is based
on the interplay of Fano and Kondo physics. We find that
the Fano line shape in the Kondo regime is qualitatively
different as compared to a noninteracting system, where
the Kondo effect is absent. Furthermore, we find that
the well-known Kondo plateau of increased conductance
in the Coulomb-blockade regime is suppressed due to the
Fano effect, and can even be inverted into a Kondo val-
ley. We call this behavior the Fano-Kondo effect. The
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second criterion addresses the scattering phase. In the
Kondo regime, this phase is p�2 associated with unitary
transmission [11]. We predict that this can be detected
in the AB phase w � 2pF�F0 dependence of the lin-
ear conductance G�w�, which shows a frequency doubling
and a maximum at w � p�2. Here, F is the enclosed
flux and F0 � hc�e denotes the flux quantum. This is
remarkable since it demonstrates that the symmetry rela-
tion G�w� � G�2w� referred to as “phase locking,” which
is an exact property of (closed) two-terminal setups [12],
does not spoil the possibility to exhibit unitary scattering
in the Kondo-correlated state. Hence, it is not necessary
to employ multiterminal or open-geometry setups for that
task, which have been studied in order to avoid phase lock-
ing. Their theoretical interpretation, however, relies on
the assumption that multiple scattering events are absent,
a condition which is difficult to control in experiments.
This may be one reason for the discrepancy between recent
phase shift measurements and theoretical predictions [13].
Another reason which favors the use of a closed-geometry
setup from the practical point of view is the fact that the
signal is strongly reduced in open geometries, since most
of the emitted electrons are absorbed by terminals in the
periphery.
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FIG. 1. AB interferometer with a quantum dot embedded.
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The model.—The model we consider is depicted in
Fig. 1. Electrons driven through the device have either to
go through the quantum dot, described by an Anderson
model, or can be transferred directly. The area enclosed
by the two paths is penetrated by a magnetic flux F.
The Hamiltonian H � HL 1 HR 1 HD 1 HT 1 HLR

contains Hr �
P

ks ekra
y
ksraksr for the left and right

lead, r � L�R. The isolated dot is described by
HD � e

P
s ns 1 Un"n#, where ns � cy

scs, and e is
the level energy measured from the Fermi energy of
the leads. Tunneling between dot and leads is modeled
by HT �

P
ksr�Vra

y
ksrcs 1 H.c.�, where we neglect

the energy dependence of the tunnel matrix elements
VL�R . The intrinsic linewidth of the dot levels due to
tunnel coupling to the leads is (in the absence of the
upper arm) G � GL 1 GR with GL�R � 2pjVL�Rj

2NL�R ,
where NL�R is the density of states in the leads. The
electron-electron interaction is accounted for by a
charging energy U � 2EC for double occupancy. The
transmission through the upper arm is modeled by the
term HLR �

P
kqs�Weiwa

y
ksRaqsL 1 H.c.�. We choose

a gauge in which the AB flux F enters only the tunnel
matrix element for the direct transmission.

General current formula.—The current from the right
lead is given by I � IR � ed�n̂R ��dt � i�e�h̄� ��Ĥ , n̂R ��.
The latter expression yields Green’s functions which in-
volve Fermi operators for the leads and the dot,

IR � 2
e
h

X
q[L,k[R,s

Z
dv�WeiwG,

qk,s�v� 1 H.c.�

2
e
h

X
k[R,s

Z
dv�VRG,

dk,s�v� 1 H.c.� , (1)

with notations G,
qk,s�t� � i�ay

ksRaqsL�t�� and G,
dk,s�t� �

i�ay
ksRcs �t��. The indices q and k label the states in the

left and right lead, respectively. The index d indicates that
a dot electron operator is involved (in our simple model
there is only one dot level). The first (second) line of
Eq. (1) describes electron transfer from the left (from the
quantum dot) to the right lead or vice versa. This transfer
can be a direct tunneling process or a complex trajectory
through the entire device.

Our goal is to derive a relation between the current
and Green’s functions involving dot operators only. To
achieve this, we employ the Keldysh technique for the
Green’s functions G,, Gr, and Ga, where Gr and Ga

are the usual retarded and advanced Green’s functions, re-
spectively. We write down Dyson-like equations, collect
all contributions (including those with multiple excursions
of the electrons to the leads and the quantum dot and ar-
bitrary high winding number around the enclosed flux),
and make use of the conservation of total current. We
get I � �2e�h�

R
dv T �v� � fL�v� 2 fR�v�� with the to-

tal transmission probability T�v� per spin given by
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T �v� � Tb 1
p

aTbRb coswḠ ReGr�v�
2

1
2 �a�1 2 Tb cos2w� 2 Tb�Ḡ ImGr�v� , (2)

with Tb � 4x��1 1 x�2 being the background trans-
mission probability, Rb � 1 2 Tb, x � p2W 2NLNR ,
and Ḡ � G��1 1 x�. Asymmetry in the coupling of
the dot level to the left and right lead is parametrized
by a � 4GLGR�G2 (for resonant transmission the
zero-temperature conductance through the quantum dot is
G � ae2�h per spin). The first term in Eq. (2) describes
transmission through the upper arm. The second and third
terms represent both transport through the quantum dot
as well as interference contributions. We emphasize that
the Green’s function for the quantum dot entering Eq. (2)
has to be evaluated in the presence of the upper arm. The
expansion of Eq. (2) up to first order in G and W has
been used [14] to address the effect of spin-flip processes
on the suppression of the interference signal. We note
that Eq. (2) can be generalized to even more complex
scattering geometries within the formalism presented in
Ref. [15].

Our result can be viewed as a generalization of the
Landauer-Büttiker formula to the interacting case. It in-
cludes interference effects and is especially suitable to de-
scribe linear-response transport. In this regime, T �v� is
needed for zero bias voltage only, i.e., we can calculate the
equilibrium Green’s function Gr by using the numerical
renormalization group (NRG) technique [16] generalized
to the case of two reservoir channels coupled to the dot
[17]. In the following, however, we focus on the T � 0
case where, using Fermi liquid properties, all relevant in-
formation can be extracted from the dot occupation number
calculated by NRG.

Friedel sum rule.—For U � 0, the Green’s function
can be calculated exactly. In equilibrium, the self-energy
S�v�, defined by Gr�v� � 1��v 2 e 2 S�v��, reads
S�v� � 2�Ḡ�2�

p
a
p

x cosw 2 iḠ�2 and is independent
of v for a flat band in the reservoirs. In our calculations,
this condition is satisfied due to D ¿ G, where D is the
half bandwidth (for a discussion of narrow-band effects,
see Ref. [18]). For arbitrary U, we use the Friedel sum
rule [2] which at zero temperature yields ImS�0� � 2Ḡ�2
and a renormalized level position e 1 ReS�0�. The latter
is related to the resonant scattering phase shift dres �
p�n��2 of the dot (where �n� �

P
s�ns� is the total dot

occupation) by

e �
2

Ḡ
�e 1 ReS�0�� � cotdres . (3)

With these properties, we obtain the zero-temperature
linear conductance G � 2ge2�h [or the dimensionless
conductance g � T�0�] from Eq. (2). By some algebra, it
can be recast into the generalized Fano form,

g � Tb
�e 1 q�2

e2 1 1
1 a

sin2w

e2 1 1
, (4)
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with the Fano parameter,

2q � cotd �
q

aRb�Tb cosw . (5)

Here, we have introduced the nonresonant phase shift d

which is due to scattering of free electrons at the weak
link formed by the direct tunneling path. Equation (4) can
then be expressed completely in terms of phase shifts:

g � Tb
sin2�dres 2 d�

sin2d
1 a sin2w sin2dres . (6)

Discussion.—Figure 2 shows the linear conductance as
a function of level position e for different values of Tb at
vanishing AB phase w � 0. (For all figures we choose
symmetric coupling, a � 1.) We find asymmetric line
shapes of the peaks and dips around e � 0 and e 1 U �
0, which indicates the presence of the Fano effect.

The Kondo effect shows up at Tb � 0 as a large plateau
of unitary transmission. At finite Tb, the plateau survives
but is reduced in height, similar to findings in recent ex-
periments [6]. However, in these experiments the nature
of the direct tunneling path has not yet been clarified. In
particular, the direct tunneling strength cannot be tuned
independently from the level broadening, which makes a
quantitative comparison difficult. It would, therefore, be
highly desirable to realize the geometry shown in Fig. 1
in order to directly verify the reduction of the Kondo
plateau. This reduction, which we call the Fano-Kondo
effect, can be understood analytically from Eq. (6). In the
presence of interaction, the occupation of the dot is given
by �n� 	 1 in the whole Coulomb-blockade regime 2U 1

Ḡ , e , 2Ḡ, i.e., the resonant phase shift is dres � p�2,
and Eq. (6) simplifies to

gdres�p�2 � a�1 2 Tb cos2w� , (7)

or g � aRb for w � 0 within the whole plateau. We em-
phasize that the Kondo effect does not break down. The
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FIG. 2. Linear-response conductance at zero temperature as a
function of level position e for different values of the back-
ground transmission Tb. We have used U�D � 0.5 and G�D �
0.063, where the half bandwidth D � 1 has been taken as the
unit of energy. Note that, due to the small ratio G�D, the results
obtained here are cutoff independent. The AB phase is w � 0.
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reduction of the conductance plateau is rather due to in-
terference between the lower (Kondo) and the upper (ref-
erence) arm. For noninteracting systems, the phase is
p�2 at resonance �e � 0� only, i.e., there is no plateau.
The formation of a reduced Fano-Kondo plateau is there-
fore a clear indication for Kondo correlations in the quan-
tum dot under study. Far away from the plateau, we get
dres ! 0, p, and, thus, g � Tb from Eq. (6) as expected.
For arbitrary dres, we get

gw�0 � �a 1 �1 2 a�Tb� sin2�dres 2 d� . (8)

This means that the conductance has a peak (of height
2e2�h for a � 1 or Tb � 1) at dres � d 6 p�2 and is
zero for dres � d, in agreement with Fig. 2. We empha-
size the complementary behavior of the limiting cases of
a closed �Tb � 0� and an open �Tb � 1� channel in the
upper arm. For Tb � 0 we obtain the usual Kondo plateau
[1,3], but for Tb � 1 we have d � p�2 and the conduc-
tance is zero in the Kondo valley but 2e2�h outside.

We now turn to the dependence of the conductance on
the AB phase w and the question of whether the phase
dres � p�2 for unitary transmission in the Kondo regime
can be detected from the AB oscillations of the linear
conductance for a closed AB interferometer. We have
calculated the shape of the AB oscillations for different
gate voltages in and outside the Kondo regime, as shown
in Fig. 3. Because of the phase locking property G�w� �
G�2w�, we have plotted only w [ �0, p�. The inset shows
the lowest coefficients of the Fourier expansion G�w� �P

n aneinw .
Outside the Kondo regime (e�D � 0 and 20.5), the AB

oscillations are dominated by the lowest harmonic (period
2p), with global extrema at w � 0, p. A drastic change
occurs as soon as the dot is tuned into the Kondo regime:
Then, the AB oscillations show a maximum at w � p�2

FIG. 3. AB oscillations of the linear conductance for different
level positions e. Parameters are identical to those in Fig. 2,
with a background transmission of Tb � 0.3. Inset: Absolute
value of Fourier coefficients, janj. In the Kondo regime, the first
harmonic vanishes and a2 dominates, thus effectively doubling
the frequency of the AB oscillations.
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FIG. 4. Dependence of the Fano line shape on the AB phase
for the same parameters as in Fig. 2 and a background transmis-
sion of Tb � 0.3.

with the universal conductance 2ae2�h independent of
the value of the background transmission Tb. As a con-
sequence (see inset of Fig. 3), the n � 1 Fourier coeffi-
cient vanishes, and the second harmonic dominates, thus
effectively doubling the oscillation frequency. Because of
Kondo screening, this frequency doubling persists over a
finite range of gate voltages corresponding to the conduc-
tance plateau. This effect, therefore, yields a conveniently
measurable and precise criterion for Kondo correlations in
a quantum dot.

Figure 4 illustrates the “pinning” of the AB maximum.
We show G�e� for different AB phases w. For w � p�2
we recover a Kondo plateau with height

gw�p�2 � a 1 �Tb 2 a� cos2dres . (9)

A special case is Tb � a where the conductance is given
by 2ae2�h for all level positions. Furthermore, we note
the property G�e, w� � G�2e 2 U, w 1 p� which fol-
lows from particle-hole symmetry.

Summary.—We have studied the interplay of Kondo and
Fano physics in the most basic model describing a closed
AB interferometer which contains an interacting quantum
dot in one of its arms. We derived a current formula and
used the Friedel sum rule to calculate the exact linear con-
ductance at zero temperature with the help of the numerical
renormalization group generalized to two-channel systems.
We found a characteristic Fano-suppressed Kondo plateau.
Furthermore, we demonstrated that unitary transmission of
a Kondo-correlated state can be identified by a frequency
doubling of the AB oscillations and a conductance maxi-
mum at w � p�2 with universal height.
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Note added.—While this paper was being written, a
preprint [19] was published, in which a similar formula as
Eq. (2) has been presented for the same model. However,
we believe that the result of Ref. [19] is incorrect since it
differs from our result by a factor �1 1 x� in the second
and third terms.
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