
VOLUME 87, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 8 OCTOBER 2001

156802-1
Kondo Effect in Quantum Dots at High Voltage: Universality and Scaling
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We examine the properties of a dc-biased quantum dot in the Coulomb blockade regime. For voltages
V that are large compared to the Kondo temperature TK , the physics is governed by the scales V and g,
where g � V� ln2�V�TK � is the nonequilibrium decoherence rate induced by the voltage-driven current.
Based on scaling arguments, self-consistent perturbation theory, and perturbative renormalization group,
we argue that due to the large g the system can be described by renormalized perturbation theory in
1� ln�V�TK � ø 1. However, in certain variants of the Kondo problem, two-channel Kondo physics is
induced by a large voltage V .
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In recent years, it became possible to observe the
Kondo effect in quantum dots in the Coulomb blockade
regime [1–4]. These systems allow one to investigate how
nonequilibrium induced by external currents and bias
voltages influences the Kondo physics. Similarly, the ex-
perimentally observed anomalies of the energy relaxation
in strongly voltage-biased mesoscopic wires [5] have
recently been shown [6] to be caused by scattering from
magnetic impurities or two-level systems.

In equilibrium, almost all properties of the Kondo effect
are well understood, and the Kondo model together with
the methods used to solve it [e.g., renormalization group
(RG), Bethe ansatz, conformal field theory, bosonization,
density matrix RG, flow equations, or slave particle tech-
niques] have become one of the central paradigms in con-
densed matter theory. However, in nonequilibrium many of
the above-mentioned methods fail, and despite the experi-
mental and theoretical relevance and a substantial body of
theoretical work [7–16], several even qualitative questions
about the Kondo effect in nonequilibrium have remained
controversial. Recently, Coleman et al. [14] claimed that
the Kondo model at high voltages V ¿ TK cannot be de-
scribed by (renormalized) perturbation theory (PT) but is
characterized by a new two-channel Kondo fixed point (see
also [13]). By contrast, Kaminski et al. [8] argue that the
nonequilibrium decoherence rate g destroys the Kondo ef-
fect. We will show in the following that the Kondo effect is
indeed destroyed in the case of the usual Anderson model,
but for certain variants of the Kondo model, where the
current at high bias is suppressed, the scenario proposed
in [14] appears to be recovered.

We model the quantum dot using the Anderson model

HA � H0 1 ´d

X
s
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sds 1

X
aks

�tac
y
aksds 1 H.c.�

1 Und"nd# , (1)

where H0 �
P

aks ´akc
y
akscaks is the Hamiltonian of the

electrons in the left and right leads, a � L, R, charac-
terized by a dc bias voltage V , ´L�Rk � ´k 6 V�2, re-
spectively. We will consider only symmetrical dots with
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tunneling matrix elements tL � tR � t. The negative ´d

with j´dj ¿ G � 2pN0t2, where N0 is the electron den-
sity of states in the leads, and the large Coulomb repulsion
U ! ` enforces the number of electrons nd �

P
s dy

sds

in the dot level to be approximately 1.
In this regime, the local degree of freedom of the quan-

tum dot is a spin �S � 1
2

P
s,s0 dy

s �sss 0ds 0 , where �s is
the vector of Pauli matrices, and the low-energy proper-
ties of HA are well described by the two-lead Kondo (or
Coqblin-Schrieffer) model,
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(2)

where cL�R0s �
P

k cL�Rks . For an Anderson model with
symmetrical coupling to the leads, one obtains JL � JR �
JLR � JRL � 4V0 � 2t2�´d � J. For sufficiently small
J, the potential scattering term V0 can be neglected and,
as will be seen, the equilibrium and the nonequilibrium
physics of the Kondo model is completely universal, char-
acterized by a single scale, the Kondo temperature TK �
D
p

N0J e21��2N0J�, where D is a high-energy cutoff. The
precise formula for the prefactor of TK depends on de-
tails of the model. However, for TK , T , V ø D relevant
physical quantities like the conductance G are universal,
G � G�V�TK , T�TK � and do not depend on details of the
original Hamiltonian.

In the first part of the paper, we investigate in detail the
Anderson model in the Kondo regime at high voltages us-
ing the so-called noncrossing approximation (NCA). In the
second part we will use the insight gained from this analy-
sis to study a heuristic version of “poor man’s scaling” in
nonequilibrium for a Kondo model with JLR , JL�R .

To derive NCA, one first rewrites HA in the limit U ! `

using a so-called pseudofermion fs and a spinless slave
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boson b with ds � byfs, subject to the constraint Q �P
s fy

sfs 1 byb � 1. The Anderson model then takes
the form HA � H0 1 ´dbyb 1

P
a,s�Vac

y
as0b

yfs 1

H.c.�. In this language, the NCA is just the lowest-order
self-consistent PT in ta , where the constraint Q � 1
is taken into account exactly. While the NCA fails to
describe the low-energy Fermi liquid fixed point in the
Kondo regime correctly [17], it gives reliable results (with
errors of the order of 10%) in equilibrium for temperatures
down to a fraction of TK . As a self-consistent and con-
serving approximation, it also displays the correct scaling
behavior and reproduces the relevant energy scales.

While the NCA equations in nonequilibrium have been
solved by many groups [15], we are not aware of any
careful analysis of the relevant scales at high bias volt-
age, which is central for a qualitative understanding of the
nonequilibrium Kondo effect. Generally, the NCA equa-
tions have to be solved numerically; however, in the limit
of extremely high voltage, lnV�TK ¿ 1 (but V ø D), an
analytical solution is possible: the problem is in the weak
coupling regime. Finite V induces an inelastic spin relax-
ation or decoherence rate. Since in NCA the spin density
is just a convolution of the pseudofermion propagators,
this rate is given by 2 ImSf�0� � 2g, with Sf the pseudo-
fermion self-energy. We start by calculating the retarded
self-energy S

r
b�v� of the boson, using the fact that (as

shown below) the spectral function of the pseudofermion
is a sharp peak of width g ø V . Throughout we consider
the low temperature limit, T � 0, and obtain ImS

r
b�v� �

2pJN0j´d j � f
g
L �2v� 1 f

g
R �2v��, where f

g

R�L are the
Fermi functions in the left and right leads, broadened
by g. The step function in ImS

r
b�v� leads to logarith-

mic contributions to ReS
r
b�v�, cut off by g and the band

width D. Using relations like 1 2 2N0J ln�D�jvj� �
2N0J ln�jvj�TK � one obtains for the real part of the bo-
son propagator Gr

b�v�, for lnV�TK ¿ 1,
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(3)

This combination plays the role of an effective (frequency
dependent) exchange coupling Jeff. Remarkably, the per-
turbative expression Eq. (3) would develop a pole close
to v � 6V�2 if g , T � �

p
T2

K 1 �V�2�2 2 V�2 �
T 2

K�V . The breakdown scale T� of PT has also been
discussed in the fourth reference listed in Ref. [6] and
Ref. [14]. It indicates that Eq. (3) is valid only for T � ,

g , V . Indeed, this criterion is fulfilled (see Fig. 1), as
one finds within NCA
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p

8
V
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TK

"
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ln2 V
TK

!#
. (4)

For the conductance in units of the conductance quantum
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FIG. 1. Nonequilibrium decoherence rate g � ImSf�0� calcu-
lated within NCA compared to the strong coupling scale T � �p

T 2
K 1 �V�2�2 2 V�2 (dashed line). For g ¿ T � one stays in

the weak coupling regime. The symbols correspond to three dif-
ferent values of TK , TK�D � 9 3 1026, 8 3 1025, 5 3 1024.
Inset: conductance G in units of G0 � 2e2��2p h̄�. Long-
dashed and solid lines: asymptotic analytical results, Eqs. (4)
and (5), in leading and next-to-leading order, respectively.

G0 � 2e2��2p h̄� we obtain for lnV�TK ¿ 1
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Numerical results for smaller voltages down to V , TK

are shown in Fig. 1 and display universal behavior over
the complete range of voltages and over several orders of
magnitude in TK . Despite the fact that for high voltages,
lnV�TK ¿ 1, one stays in the weak coupling regime, the
prefactors of gNCA and GNCA are not exact, since the NCA
for the Anderson model treats the potential scattering V0

and the Kondo coupling J incorrectly on equal footing. It
is not difficult to obtain the correct asymptotic prefactors
[8] by calculating g and G in leading order PT in J for
the Kondo model Eq. (2) (with V0 � 0) and by replacing
J by 1��2 lnV�TK �. This corrects the leading term of the
NCA results Eqs. (4) and (5) by a prefactor 3�4. It is,
however, important to stress that the asymptotic result in
the limit lnV�TK ! ` is almost useless as, due to the
logarithmic dependence [Eq. (4)], subleading corrections
are very large (e.g., still 10% for V�TK � 106).

In the limit of large V , the scale g influences quanti-
ties like the conductance, where all electrons in an energy
window V contribute only slightly. The situation is dif-
ferent for the spectral function Ad�v� of the electron on
the quantum dot. Ad�v� calculated numerically within
NCA is shown in Fig. 2. Like many groups before, we
obtain two well defined peaks at voltages 6V�2. In the
limit lnV�TK ! ` we find approximately ANCA

d �v� �
�p2�G� �N0JNCA

eff �v��2, with large but universal subleading
corrections and a nonuniversal, (almost) constant potential
scattering background of O�G�´

2
d�. NCA incorrectly treats

potential and spin flip scattering on equal footing and, thus,
overestimates the asymmetry of the peaks with respect to
156802-2
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FIG. 2. Spectral function ANCA
d �v� for various voltages V ,

each calculated in NCA at two values of TK (solid and dashed
lines) differing by a factor of 10. The NCA systematically
overestimates the asymmetry of the peaks. Inset: Asymptotic
behavior of ANCA

d �v� in the Kondo scaling limit. Squares: nu-
merical NCA result; solid line: asymptotic expression for
ln�V�TK � ! `.

v $ 2v in the small J limit. This can be seen from
an analysis of the Schrieffer-Wolff transformation which
shows that this asymmetry is nonuniversal and of O�N0V0�.
Since the antisymmetrical in v contributions to Ad�v� can-
cel in the integral for the conductance, nonuniversal cor-
rections to G are much smaller. Note that the logarithmic
cusps of Ad�v� have an additional, small rounding of O�g�
compared to Eq. (3), but for large voltage, the half width
at half-maximum D of the peaks is not given by g but by
D �

p
gV�2 � 0.3V� ln�V�TK � . g (see Fig. 2).

Our analysis of the Kondo model suggests that qualita-
tively different behavior can be expected if the nonequi-
librium relaxation rate g is sufficiently small, g , T2

K�V .
Since a nonzero g requires finite current, e.g., within bare
PT g ~ N0J2

LRV , it is therefore interesting to study the
Kondo model Eq. (2) for JLR ø JL, JR , using ideas from
perturbative RG. Such a model cannot be derived from
a simple Anderson model but may arise in more compli-
cated situations. It was also considered in [16]. Not much
is known about how the concepts of fixed points and renor-
malization group can be applied to a nonequilibrium situ-
ation (see, however, Ref. [11]). The problem is that in the
presence of a finite bias voltage, many physical quantities
like the conductance are not determined by low-energy ex-
citations even at T � 0, since all states with energies of
order of the applied voltage V contribute. Therefore, a
controlled perturbative RG must probably be formulated
for the full frequency-dependent vertices in Keldysh space.
We will not try to develop such a method here but propose
to use a heuristic version of poor-man’s scaling adapted to
the present situation. As usual, we investigate how cou-
pling constants change when the cutoff L of the theory
is modified. As long as the cutoff is large compared to
the voltage, we expect that the usual poor-man’s scaling
equations hold. For the model with N0JL � N0JR � gd ,
156802-3
N0JLR � gLR , and V ø L, one obtains [8,14]

dgd

d lnL
� 2�g2

d 1 g2
LR�,

dgLR

d lnL
� 22gdgLR . (6)

These are the RG equations of a channel-asymmetric two-
channel Kondo model, where the even and odd channels
couple to the spin with coupling constants ge � gd 1 gLR

and go � gd 2 gLR # ge. Note that for the Anderson
model, the odd channel decouples and go � 0. Two pa-
rameters, TK and a, determine the physics of the channel-
asymmetric two-channel Kondo model,

TK � De21��gd1gLR�, a �
�gd 2 gLR� �gd 1 gLR�

2gLR
,

(7)

where TK is defined by ge�TK � � 1. The dimensionless
number a is the natural parameter to characterize the chan-
nel anisotropy, since it is invariant under the perturbative
RG flow Eq. (6), i.e., a�L� � a0 � const for L . V .
If higher orders of g are included in Eqs. (6), the prefac-
tor of TK , Eq. (7), changes and the definition of the RG
invariant a has to be slightly adjusted (a dimensionless
invariant characterizing the flow will exist even in higher
orders). For the usual one-channel Kondo effect or the
Anderson model Eq. (1), a0 � 0, while for a0 ! ` the
model is just the well-known channel-symmetric two-
channel Kondo model. We will therefore investigate how
a will change for L , V in order to determine if the sys-
tem flows towards the two-channel fixed point proposed by
Wen [13] and Coleman et al. [14]. For V ¿ TK , Eq. (6)
is valid down to L � V and we obtain

gd�V � �
1
2

µ∑
ln

V
TK

∏21

1

∑
1

a0
1 ln

V
TK

∏21∂
, (8)

gLR�V � �
1
2

µ∑
ln

V
TK

∏21

2

∑
1

a0
1 ln

V
TK

∏21∂
. (9)

For L , V , the calculation of the RG flow is less obvious.
Some of the logarithmically diverging vertex corrections
of J are cut off by the voltage V , changing the RG flow to

dgd

d lnL
� 2g2

d ,
dgLR

d lnL
� 0 , (10)

in complete agreement with the analysis of Coleman et al.
[14]. However, all remaining logarithmic contributions are
cut off by the decoherence rate g as it is evident, e.g., from
our analysis of NCA. Thus, Eqs. (10) are valid only for
g ø L ø V .

Since in the perturbative regime of the RG the bare
coupling constant N0JLR is replaced by the renormalized
one, gLR , we find

g � Vg2
LR�V � , (11)

which is V��2 ln�V�TK ��2 for a0 ø 1� ln�V�TK � and
V��4a

2
0 ln4�V�TK �� for a0 ¿ 1� ln�V�TK �. (The precise
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FIG. 3. g�T � as a function of a0 at V � 10TK . Inset: a�

as a function of a0 for various voltages. For g�T� ø 1, the
system displays strong coupling behavior for T , T �. a� ¿ 1
indicates that this regime is dominated by two-channel physics.

prefactor is irrelevant for our discussion.) If we assume
for the moment that g is small, we find that gd flows to
strong coupling at a scale T� defined by gd�T �� � 1,

T� � TK

µ
TK

V

∂1��112a0 ln�V �TK ��
. (12)

For a0 � 0 this scale coincides with the one introduced in
[14], where the effects of g have been neglected. The sys-
tem will, however, flow to strong coupling only if g , T �,
while it remains in the weak coupling regime for g ¿ T �.
For the usual Kondo or Anderson model with a0 � 0, g is
always larger than T� for V ¿ TK (as V�TK . lnV�TK ),
and we therefore conclude in contradiction to Ref. [14]
that in the symmetrical Kondo model there is no strong
coupling regime for V ¿ TK . The situation is, however,
different in the asymmetric model with a0 * 1�2 (Fig. 3).
Here g�T� � �V�TK ���4a

2
0 ln4�V�TK �� is much less than

1 for V ø V � � TK�4a
2
0 ln4�4a

2
0 ln4�4a

2
0 ln4�· · ·����, e.g.,

V � � 6 3 104TK for a0 � 1. What is the nature of this
strong coupling regime which is reached for TK ø V ø

V � and a0 . 1�2? Insight into this question can be gained
from a calculation of a�L � T ��, defined in Eq. (7). Note
that in the regime g ø L ø V , a is not invariant under
the RG flow Eqs. (10). We obtain

a� � a�T�� � ln
V
TK

µ
1 1 a0 ln

V
TK

∂
� a0 ln2 V

TK
.

(13)

Obviously, a is strongly enhanced by the voltage (e.g.,
ln2�103� � 50). Since for a ! ` the system maps to a
two-channel Kondo problem, we conclude that for a0 .

1�2 and TK ø V ø V � the system will likely be domi-
nated by two-channel physics over a large regime.

In summary, the usual Kondo model at high voltages,
TK ø V ø D, is a weak coupling problem because non-
equilibrium relaxation processes allowed even at T � 0
destroy the Kondo effect, as their rate g ¿ T� � T2

K�V
is large. Nevertheless, bare perturbation theory cannot be
156802-4
applied and even the leading order of renormalized per-
turbation theory does not give precise results in the ex-
perimentally accessible regime due to large subleading
corrections. We find two well-defined peaks of width D in
the local spectral function. In the asymptotic regime D �p

gV�2. In variants of the Kondo model with JLR ,

JL, JR , a large voltage can, however, induce qualitatively
new behavior reminiscent of two-channel Kondo physics.
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