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Within the framework of the exact muffin-tin orbitals (EMTO) theory we have developed a new method
to calculate the total energy for random substitutional alloys. The problem of disorder is treated within
the coherent potential approximation (CPA), and the total energy is obtained using the full charge density
(FCD) technique. The FCD-EMTO-CPA method is suitable for determination of energy changes due to
anisotropic lattice distortions in random alloys. In particular, we calculate the elastic constants of the
Cu-rich face centered cubic Cu-Zn alloys (a-brass) and optimize the c�a ratio for the hexagonal Zn-rich
alloys for both the e and h phases.
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The calculation of the total energy of a solid is one of
the most important problems of electronic theory, and den-
sity functional theory [1] provides one with a theoretical
foundation for solving this problem. However, the most
efficient computational scheme for the solution of the one
electron equations depends on the system at hand, as well
as on the required level of accuracy. For example, the
spherical approximation for the one electron density and
potential used in such popular techniques for electronic
structure calculations as the Korringa-Kohn-Rostoker
(KKR) or the linear muffin-tin orbital (LMTO) methods
is often sufficient for the characterization of properties
of close packed crystals on a rigid or uniformly distorted
(e.g., compressed or expanded as a whole) lattice. How-
ever, it fails to reproduce the behavior of the total energy
upon anisotropic lattice distortions. In order to calculate,
for example, elastic properties of a random alloy, where
the accuracy of the conventional KKR or LMTO methods
are known to be insufficient, more advanced full-potential
technique is needed. Therefore, one has to rely on very
crude approximations within alloy theory, like the virtual
crystal approximation [2]. Alternatively, one has to carry
out extremely time-consuming calculations for big super-
cells, or to be restricted to few selected concentrations
on the face centered or body centered cubic underlying
lattices for which the so-called special quasirandom
structures have been constructed [3].

On the other hand, a very successful approximation
which allows one to perform calculations for systems with
substitutional disorder is the coherent potential approxima-
tion (CPA). It was introduced by Soven [4], and Györffy
[5] has formulated the CPA in the framework of the mul-
tiple scattering theory. Nowadays it has become a state-of-
the-art technique for electronic structure calculations. It
has been shown that within CPA one can calculate accurate
total energies and ground state properties (lattice parame-
ters, bulk moduli, mixing enthalpies, etc.) of many alloy
systems [6,7]. However, currently the CPA is mostly used
in the framework of the KKR or LMTO methods; there-
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fore its application is restricted to close packed systems,
and, with few exceptions [8], the only type of distortion
one can allow for in these calculations is a uniform change
of the volume.

In this Letter we present a formulation of the coher-
ent potential approximation within the basis set of the
so-called exact muffin-tin orbitals (EMTO) that has re-
cently been developed by Andersen and co-workers [9],
and show that this method, combined with the full charge
density (FCD) formalism [10,11], allows one to calculate
the energy differences of a random alloy with an accu-
racy, which is sufficient to treat the effect of anisotropic
lattice distortions. We demonstrate the application of the
FCD-EMTO-CPA method in the description of the struc-
tural and elastic properties of Cu12xZnx random alloy,
which is a classical system for testing new alloy theories
[6,12,13]. Here, for the first time, we investigate two ques-
tions: (a) the calculation of the tetragonal shear moduli
for a brass (x & 0.38), which has the face centered cu-
bic (fcc) structure, and (b) the optimization of the c�a
ratio for hexagonal (hcp) e brass (0.78 & x & 0.86) and
h brass (x * 0.97� [14]. We show that there is a clear dis-
tinction between the two hexagonal phases in the Cu-Zn
system, seen as two local minima of the total energy as a
function of volume and c�a that appears for certain alloy
concentrations.

In the EMTO theory [9] the one electron effective po-
tential is represented by the optimized overlapping muffin-
tin potential [9,10,15], which is the best possible spherical
approximation to the full one electron potential. The
one electron wave functions are expanded in terms of the
EMTO’s (ZRL), which are defined for each lattice site R
and for each angular momentum quantum number L �
�l,m� with l # lmax (usually lmax � 3). The EMTO’s are
constructed from the screened spherical waves, which are
solutions of the wave equation with boundary conditions
given in conjunction with nonoverlapping hard spheres [9]
with radii aR. Inside the overlapping potential spheres
the low l (l # lmax) projections of ZRL onto the spherical
© 2001 The American Physical Society 156401-1
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harmonics YL�r̂� are the partial waves, i.e., the regular
solutions of the radial Schrödinger equation. The match-
ing between the screened spherical waves and the partial
waves is realized by additional free-electron solutions [9].
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In order to calculate the total energy of a random alloy
within the CPA one has to know the average alloy density
of states �N� and the average electron density ni for each
alloy component i [6]. The former is determined from the
average Green function
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Here the overdot stands for the energy derivative and l, l0 # lmax. The coherent Green function, g̃, and the slope matrix
[9], S, depend on the Bloch vector k from the first Brillouin zone. z denotes the complex energy and ei are the real
zeros of the logarithmic derivative function, Di , corresponding to the potential of the alloy component of concentration
ci . The coherent Green function and Green functions for alloy components, gi, are determined from the self-consistent
solution of the CPA equationsX
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where l, l0, l00 # lmax, and D̃ is the coherent logarithmic derivative function.
The main difference of the EMTO expression (1) from the similar expressions for the atomic sphere approximation

(ASA) based CPA Green functions, e.g., ASA-KKR-CPA or ASA-LMTO-CPA Green functions, is the first term on the
right hand side of (1) that assures a proper normalization of the one electron states [9]. Therefore, within the single
site approximation the Green function (1) leads to the exact density of states for the optimized overlapping muffin-tin
potential.

In the framework of the EMTO-CPA formalism, the average electron density for each alloy component is represented
in one center form around site R, i.e., ni�r� �
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where CL
L00L0 are the real harmonic Gaunt coefficients, and

the energy integral includes the occupied states. Because
of the one center form of the charge density, in Eq. (2)
the l00 and l0 summations include the higher terms as well,
which, in practice, are truncated at lhmax � 8 12 [10]. This
allows one to calculate the full charge density with an
accuracy higher than for conventional KKR calculations,
where only terms with l # lmax are included.

The overlapping muffin-tin potential for each alloy com-
ponent, yi

mt�r�, is constructed from the average electron
density ni within the spherical cell approximation (SCA).
Details about the solution of the Poisson equation within
the SCA are given in Refs. [10,15]. The effect of the
charge transfer on the electrostatic potential is taken into
account using the screened impurity model (SIM) [16]. Fi-
nally, the total energy of the random alloy is calculated as
Etot �
1
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where Finter is the average Madelung energy, and Fi
intraR

and Ei
xcR are the electrostatic and exchange-correlation en-

ergies due to the charges from the Wigner-Seitz cell at R,
VR . The last term in (3) is the SIM correction to the elec-
trostatic energy [16], ac 	 0.6, w is the average atomic
radius, and Qi
R denotes the total number of electrons in-

side the cell for the alloy component i. The individual
energy functionals are evaluated using the full charge den-
sity technique [11].
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FIG. 1. Comparison between the theoretical (FCD-EMTO-
CPA: present calculation; FP-LMTO: Ref. [2]; FP-LAPW:
Ref. [20]) and experimental [19] tetragonal elastic constant and
equilibrium atomic radius (shown in the inset) for a brass as a
function of the concentration of zinc.

In Fig. 1 we present our theoretical results [17,18] for
the tetragonal elastic constant (C0) and equilibrium atomic
radius (shown in the inset), and compare them to the avail-
able experimental data [19]. For pure Cu results of full-
potential calculations [2,20] are also shown, and they agree
well with our result. In the a phase an increase of the Zn
concentration leads to a decrease of C0 and an increas-
ing equilibrium volume. The average softening of C0 be-
low 30 at. % Zn is 20.30 GPa per at. % Zn compared to
the measured value of 20.23 GPa per at. % Zn [19]. We
have found that this trend correlates well with the fcc-bcc
structural energy difference, in accordance with the pre-
vious observations obtained within the virtual crystal ap-
proximation for the 4d and 5d transition metal alloys [2].
The Ebcc

tot 2 Efcc
tot energy difference for a brass, calcu-

lated using the FCD-EMTO-CPA method, decreases nearly
linearly with x from 1.5 mRy at x � 0 and it becomes zero
at x 	 0.4.

The theoretical c�a axial ratios for the hcp Cu-Zn struc-
tures [17,21] and the corresponding equilibrium atomic
radii along with the available experimental data [14] are
plotted in Fig. 2. For pure Zn our result is also compared
with those obtained by means of full potential calculations
in different studies [22,23]. It is well known that the cal-
culated axial ratio in Zn depends to a large degree on the
details of the calculations; in particular, it depends on
the exchange-correlation functional, but it also depends
on whether the calculations are done at the theoretical or
experimental equilibrium volume. Furthermore, as it is
visualized in the case of the Cu0.07Zn0.93 alloy in Fig. 3,
the energy minimum is very shallow around the equilib-
rium. Thus, the agreement between the full potential and
the present FCD-EMTO results for pure Zn is satisfactory.

The anomalously large axial ratio of pure Zn is calcu-
lated to be reduced by 2.4% at 3 at. % Cu, in very good
156401-3
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FIG. 2. Comparison between the theoretical (FCD-EMTO-
CPA: present calculation; FP-LMTOa: Ref. [22]; FP-LMTOb:
Ref. [23]) and experimental [14] hexagonal axial ratios and
equilibrium atomic radii (shown in the inset) for e and h brass
as functions of the concentration of zinc.

agreement with the experimental result. At low Cu con-
centrations we have found that the h phase, with large
c�a ratio, is the ground state structure of the copper-zinc
alloy. With increasing Cu concentration a second total en-
ergy minimum in the volume versus axial ratio plane starts
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FIG. 3 (color). Total energy for the Cu0.07Zn0.93 random alloy
calculated by the FCD-EMTO-CPA method as a function of the
average atomic radius and hexagonal axial ratio, c�a.
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to develop. This situation is demonstrated in Fig. 3, where
the two minima correspond to 1.74 and 1.64 axial ratios,
and to 2.82 and 2.77 bohr atomic radii, respectively. Thus,
though h and e brass in the Cu-Zn system have the same
hexagonal crystal structure, they indeed represent two dif-
ferent phases, each having its own (local) energy mini-
mum. For x & 0.9 the second energy minimum becomes
stable relative to the first one, and the system stabilizes
in the e phase with a hcp structure and c�a & 1.6. The
axial ratio in the e phase initially decreases with the Cu
concentration, and above 20 at. % Cu it shows an increase
towards the ideal value of 1.63. In both of the h and e

phases the equilibrium volume changes continuously with
the concentration, but both theory and experiment exhibit
a small discontinuity around x � 0.9, corresponding to the
h to e isostructural phase transition.

In summary, we have developed an ab initio technique
for the electronic structure calculations, which allows one
to determine the total energy differences with the same ac-
curacy as for the full-potential methods, but, in contrast to
the latter, it can be used for random substitutional alloys.
We note that the ability of the presented technique to de-
scribe correctly the anisotropic lattice distortions makes it
potentially very attractive for combining it with more pow-
erful methods within the alloy theory which go beyond the
single site approximation, like the locally self-consistent
Green function method [13]. In this case one will be able
to treat alloys with short-range order and with local lattice
relaxations [13,24].
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