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Electromagnetically Induced Transparency via Adiabatic Following of the Nonabsorbing State
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It is shown that the adiabatic following of the dark, nonabsorbing state improves significantly the
electromagnetically induced transparency performance and slows down the group velocity of the probe
pulse. This concept can be used for fast selective gating of one pulse out of a pulse train.
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The first proposal [1] of electromagnetically induced
transparency (EIT) dealt with the propagation of a train
of short, single mode pulses resonant with two transitions
forming a L scheme between one excited state 3 and two
closely spaced initially populated ground state levels 1 and
2. This pulse train creates the coherence between the
ground state levels that prevents absorption at the optical
transitions. If the frequency of the pulse train is properly
chosen with respect to the ground states splitting, the popu-
lation is trapped in the dark, nonabsorbing, state [2,3]. In
those papers, the two lower states are equally populated
before the excitation, the fields have nearly equal ampli-
tudes, and the optical coherences 1-3 and 2-3 decay fast.
The problem is that to create the ground state slowly de-
caying coherence 1-2 uses an appreciable fraction of the
input field energy dissipating via spontaneous emission.

Successful experimental testing of the EIT concept [4]
employed a different scheme [the energy diagram is shown
in the inset of Fig. 1(a)]. State 2 was an excited state, ini-
tially unpopulated. Therefore, the coupling field, having
a large amplitude, drives the unpopulated states 2 and 3
and the sample is initially transparent for this field. Later
the concepts of matched pulses [5], dressed-field pulses
[6], and adiabatons [7] (see also the review [8]) were in-
troduced to treat the bichromatic pulse propagation in the
medium with resonant absorbers being initially only in the
ground state 1.

The matched pulses proposal considers the simultane-
ous excitation by the pump B2�t� and probe B1�t� pulses
matched in time and shape. If the maximum amplitude of
the B2�t� pulse is much larger than that of the probe pulse
B1�t�, the absorption of the probe is much more reduced
for the matched pulses than for the scheme proposed in
[1]. However, for long propagation distances the amplitude
of the probe pulse will be spatially and temporally modu-
lated [5].

In this Letter we consider a way to follow adiabatically
a dark state which coincides with state 1 before and after
interaction with the pulse train. This significantly reduces
the energy dissipation via luminescence from the state 3
during the excitation of the 1-2 coherence. One can define
the adiabaticity parameter A via the probability amplitude
of the state 3 during the excitation. If the following is adia-
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batic (A ! 0), the state 3 is almost empty throughout the
excitation and the atom evolution is defined only by the
dark state change. This gives a significant decrease of
the atomic response to the probe field. Compared to the
case of the matched pulses the adiabatic following provides
an additional reduction factor of j�B2 for the maximum
probability amplitude A of level 3, where j � ≠�lnB1��≠t
characterizes the change rate of the probe pulse. The
adiabatic following of the dark resonance was proposed
for stimulated Raman adiabatic passage, transferring the
atom from state 1 to state 2 without populating the excited
state 3 [9]. In that context the counterintuitive Raman
pulse sequence was proposed and experimentally tested.
In contrast to the stimulated Raman adiabatic passage, we
show that there are conditions where the atom is almost not
excited and left in state 1 after the pulse train. To the best
of our knowledge the application of the adiabatic following
for EIT has not been analyzed yet, albeit proposed in [8]
without emphasis on the difference between the maximum
amplitudes of the coupling and probe pulses.

We consider the three-level atom interaction with the
probe pulse E1 �

!
E 1�z, t� exp�i�k1z 2 V1t�� 1 c.c.,

resonant with the transition 1 $ 3, and with the coupling
pulse E2 �

!
E 2�z, t� exp�i�k2z 2 V2t�� 1 c.c., resonant

with the transition 2 $ 3. These pulses are copropagating
along the z axis. The case of exact resonance for both
pulses is taken for simplicity. In the rotating wave approxi-
mation the Hamiltonian of the three-level atom, excited
by two resonant fields, can be made slowly varying by the
unitary transformation to the interaction representation.
The result is

H � 2h̄B1�t,z�eik1zP̂31 2 h̄B2�t, z�eik2zP̂32 1 H.c. ,
(1)

where P̂mn � jm� �nj is defined in the interaction represen-
tation. The Rabi frequencies B1�t, z� � d31 ?

!
E 1�z, t��h̄

and B2�t, z� � d32 ?
!
E 2�z, t��h̄ are defined in terms of

the dipole transition matrix elements d31 and d32, assumed
to be real for simplicity. If we choose the new basis

jd� � eik2z cosaj1� 2 eik1z sinaj2� , (2)

jb� � e2ik1z sinaj1� 1 e2ik2z cosaj2� , (3)
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FIG. 1. The evolution of the probability amplitudes of the dark,
xd , bright, xb , and common, xc, states for the (a) adiabatical
pulse train and (b) for the matched pulses. (c) The evolution
of the coherence 1-2 for the matched pulses �x1x2�m and for the
AFDS pulse sequence �x1x2�a .

and jc� � j3�, then the Hamiltonian (1) is transformed as

Hdbc � SH S21 � 2h̄B�P̂bc 1 P̂cb� , (4)

where B �
q

B2
1 1 B2

2 and S is the transformation matrix
for the basis change. We drop the variables t and z for
simplicity. The time-varying mixing parameter a is de-
fined by tana � B1�B2. The indices d, b, and c denote
the dark, bright, and common states. Only the dark state is
an eigenstate of the atom-field interaction Hamiltonian (1).
The bright state is chosen as a combination of states j1� and
j2� which is orthogonal to the dark state. According to the
Hamiltonian Hdbc the bichromatic field E � E1 1 E2
153601-2
induces only the transitions b $ c and does not interact
with the state d.

Initially states 2 and 3 are not populated and the sample
is transparent for the coupling pulse. The time variation
of the field amplitudes is chosen in such a way that for
an atom with coordinate z the ground state 1 is the dark
state, uncoupled to the bichromatic excitation at the begin-
ning and at the end of the pulse train, i.e., B2�6`, z� ¿
B1�6`, z�. The coupling pulse is much longer than the
probe and hence a�6`,z� � 0. This is the first condition
of the adiabatic following of the dark state specifying the
time behavior of the pulses. When the probe pulse arrives,
the dark state has an admixture of the state 2. The am-
plitude of this admixture can be made very small if the
maximum amplitudes of the probe B1m � B1�tm, z0� and
coupling B2m � B2�tm, z0� pulses, coinciding at time tm,
satisfy the condition B2m ¿ B1m, where z0 is defined as
a position of the front edge of the sample. If the rela-
tive time behavior of the pulses is chosen such that each
atom adiabatically follows the changing dark state, then no
population is transferred to the excited state 3 (A � 0) and
the atoms remain in the dark state, uncoupled to the pulses.
Finally, the atoms are left in the ground state after the ex-
citation. Adiabatic following has an essential advantage
compared to the matched pulses with identical envelopes
since for the latter, the bright state is initially populated
and its population is completely transferred to the excited
state 3 during the interaction, while in our case the popu-
lation of the bright state is minimized by the adiabatic
following.

The evolution of the state vector of the atom in the dbc
basis, jFdbc�t��, is given by

jFdbc�t�� � S�t� jF�t�� , (5)

where jF�t�� is the state vector in the interaction represen-
tation. Both state vectors are defined for an atom localized
in point z. Taking the time derivative of Eq. (5), one ob-
tains the Schrödinger equation

h̄
djFdbc�

dt
� 2iH dbcjFdbc� , (6)

with the modified Hamiltonian

H dbc � Hdbc 1 ih̄ �SS21, (7)

i �SS21 � 2i �aP̂dbe2i�k11k2�z 1 H.c. (8)

We have neglected relaxation processes, assuming that the
time scale of the interaction with the probe field is short
and the Rabi frequency of the coupling field is strong (tp ,

T2 and B2mT2 . 1, where tp is the probe pulse duration
and T2 is the dephasing time of the induced polarization).
The first part of the modified Hamiltonian, Hdbc, induces
transitions between jb� and jc� with the rate B. The second
part, ih̄ �SS21, induces transitions between jd� and jb� with
the rate �a � � �B1B2 2 B1

�B2��B2. This rate is nonzero due
to the relative variation of the field amplitudes. The state
153601-2
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vector jFdbc� can be expressed as

jFdbc� � xde2ik2z jd� 1 xbeik1zjb� 1 xcieik1zjc� , (9)

�xd � 2 �axb , �xb � �axd 2 Bxc, �xc � Bxb .
(10)

For matched pulses �a�t� � 0 and xb�2`� � B1m�Bm,
where Bm �

p
B2

1m 1 B2
2m. Therefore, the matched

pulses transfer the population of the bright state to the ex-
cited state c, i.e., xc�t� � xb�2`� sin�u�t��2� and xb�t� �
xb�2`� cos�u�t��2�, where u�t� � 2

Rt
2` B�t� dt is the

pulse area of the bichromatic field E. The dark state and
its population remain unchanged, i.e., a � const and
xd � B2m�Bm. For our pulse train the dark state changes
in time. If the atom follows adiabatically the time-
dependent dark state, the excited state 3 remains empty
throughout the excitation. Qualitatively, one can specify
this condition as follows. The maximum value of the
mixing parameter is amax � tan21�B1m�B2m�. The time
interval during which �a fi 0 determines the interaction
time between the atom and the B1 pulse. During this time
the atom has a small probability to leave the dark state
with the rate �a [see Eq. (10)]. The maximum value of j �aj

can be estimated roughly to be amax�tp. Choosing amax
small, the probability to find the atom in the bright state is
small. According to [9], the probability to have the atom
in the excited state c is small if B�t� ¿ j �a�t�j. Thus the
second condition of the adiabatic following of the dark
state (AFDS) is B�t�tp ¿ amax. This condition, together
with the condition B2m ¿ B1m, are the two requirements
for AFDS. If both conditions hold, the atom comes back
to the ground state after interacting with the pulse train.

This qualitative discussion can be made rigorous with
the analytical solution of Eqs. (10). They remarkably co-
incide with the Bloch equations for the two-level system
if one makes the substitution u � xc, y � xb , w � xd

for the variables and D � B, x � �a for the parameters,
where u, y, w are the Bloch-vector components and D and
x are the detuning and Rabi frequency of the field driving
the two-level atom. The similarity between the equations
stems from a similarity of the physical processes: large
detuning of the driving field (D ¿ x) prevents the exci-
tation of the two-level atom. Similarly, the B2�t�-driving
field shifts the energy levels of the three-level atom out of
the resonance with the probe field B1�t� due to the ac Stark
effect.

The adiabatic following approximation for the descrip-
tion of the nonlinear response of a two-level atom to a near
resonant light pulse was developed by Crisp [10]. We use
this approximation scheme to solve Eqs. (10), assuming
that the change of the generalized Rabi frequency B�t� is
negligibly small during the change of �a. The solution is
presented as a series expansion

xd�t� � 1 2
�a2

2B2 1
3 �a4 1 8 �a...

a 2 4ä2

8B4 1 O�B26� ,

(11)
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xb�t� �
ä

B2
2

2....
a 1 3 �a2ä

2B4
1 O�B26� , (12)

xc�t� �
�a
B

2
�a3 1 2...

a

2B3
1 O�B25� . (13)

For the B2 field to have a strong effect on the B1 ex-
citation, it follows from (11)–(13) that one has to satisfy
the condition B�t� ¿ j �a�t�j and then the adiabaticity
parameter A 	 �a�B ! 0. Figure 1(a) shows the result
of a numerical simulation of Eqs. (10) for the AFDS
of the atom in the point z0 obtained with the Gaussian-
shaped pulses B1�t� � B1m exp�2r2

1 �t 2 tm�2� and
B2�t� � B2m exp�2r2

2 �t 2 tm�2� where r1 � 10r2,
r1tm � 10, and B1m � 0.2B2m � r1

p
p�2. The pulse

area of the probe is u1�1`� � 2
R1`

2` B1�t� dt � p. Such
a pulse, acting alone, would leave the atom in the excited
state 3 at t � 1`. The plot shows that the excitation of
the common state is small and the atom is left in the dark
state after the pulse train is gone. The difference between
the numerical and analytical solutions is indistinguishable
on this scale. Figure 1(b) shows the atomic evolution for
the matched pulses with r2 � r1 and the other parameters
are the same as in the Fig. 1(a). The probability amplitude
of the bright state xb is completely transferred to the
common, excited, state 3 [xc�1`� � xb�2`�]. The atom
is left excited. However, the excitation level is strongly
reduced compared to the case without coupling field.

The wave equation for the probe field envelope [6] isµ
≠

≠z
1

1
c

≠

≠t

∂
!
E 1�z, t� � 2

2pV1Nd13

c
x1x3 , (14)

where N is the concentration of the resonant atoms, x1
and x3 are the coefficients of the state vector jF�t�� �
x1j1� 1 x2ei�k12k2�zj2� 1 ix3eik1z j3� expressed in the in-
teraction representation. These coefficients are related to
xd , xb, and xc by the relations x1 � xd cosa 1 xb sina,
x2 � xb cosa 2 xd sina, and x3 � xc. For the adiabatic
pulses one can obtain from Eqs. (11)–(13) the expres-
sion x1x3 � �B1�B2

2 which results from the approxima-
tion xd 	 1, xb 	 0, xc 	 �B1�B2

2, and cosa 	 1. Then
Eq. (14) is reduced toµ

≠

≠z
1

1
c

≠

≠t

∂
!
E 1�z, t� � 2

h

c

≠

≠t
!
E 1�z, t� , (15)

where h � Kc�B2
2T2, 2K is the power attenuation co-

efficient of the probe if the atoms are not disturbed by
the coupling field, T2 is the dephasing time of the op-
tical coherence 1-3. The solution of Eq. (15) with con-
stant coupling field amplitude shows that the probe is
not absorbed. However, its group velocity is reduced as
yg � c��1 1 h�. The slowly varying amplitude of the
polarization induced by the coupling pulse is P2�z, t� �
iNd23x2x3, where x2x3 � 2 �B1B1�B3

2. This polarization
is nonzero only during the probe pulse interaction with
the atom and lasts tp. One can find that the distortion
153601-3
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of the coupling pulse and the change of its group veloc-
ity are negligible compared to the probe. Therefore the
probe pulse, having group velocity yg, is delayed relative
to the coupling pulse. When the probe pulse reaches the
edge of the coupling pulse where B1�tr � � B2�tr�, strong
reshaping of both pulses takes place. This happens at
zr � z0 1 ctcyg��c 2 yg� and tr � tm 1 ctc��c 2 yg�
if at z0 and t � tm the pulse maxima were coincident,
and tc is defined as B2�tm 1 tc , z0� � B1m. The distortion
of both pulses if they have nearly equal Rabi frequencies
was considered in [7]. These distortions are developed in
adiabatons.

The change of the group velocity is typical for EIT
since in the EIT window anomalous dispersion takes place
with the steep slope of the real part of the refractive index
as a function of frequency (see, for example, Ref. [8]).
The description in the spectral domain assumes that the
probe pulse spectral width must be smaller than the
transparency window given by the Rabi frequency of
the coupling pulse, or 1�tp , B2m. Our time domain
consideration of AFDS gives another condition for EIT,
i.e., j �B1�B2

2jmax � R1R2 , 1, where R1 � B1m�B2m and
R2 � jjjmax�B2m. The parameter R2 is proportional to
the inverse of B2mtp , if the probe pulse has a bell shape
(for example, Gaussian). Then the condition that the probe
pulse spectral width must be smaller than the EIT window
is R2 , 1. The product R1R2 is the maximum of jx3j
if the first term in the expansion Eq. (13) gives the main
contribution. This occurs if the inequalities R1 , 1 and
R2 , 1 are simultaneously verified. This can be shown by
analyzing the second term in the expansion of xc�t� [see
Eq. (13)]. The term contains contributions proportional to
�R1R2�3 and R1R3

2 if we estimate roughly the third time
derivative of the mixing parameter as ...

a 
 B1m�B2mt3
p .

Both components are small if R1 , 1 and R2 , 1 and,
hence, the condition R1R2 , 1 alone is not sufficient
for EIT.

It is worthwhile to mention that since matched pulses are
nonadiabatic, the coherence between the states 1, 2, and 3
remains after the pulses. On the contrary, adiabatic pulse
switching on and off leaves the atom unexcited. Therefore,
only the simultaneous switching off of the coupling and
probe pulses produces the remnant coherence— the im-
printed information about the relative phases of the pulses.
Figure 1(c) shows the evolution of the coherence 1-2 for
the matched pulses �x1x2�m, and for the AFDS pulse se-
quence �x1x2�a. The matched pulses leave an appreciable
1-2 coherence which would reproduce the probe pulse if
the coupling pulse alone would be applied again after some
delay time.
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In this Letter we have shown that, if the coupling pulse
is much longer than the probe pulse, there will be a much
stronger reduction of the absorption of the probe pulse
compared to the case of matched pulses. The crucial point
is the adiabatic switching on and off of the coupling pulse.
Adiabatic following of the dark state does not leave any
information in the atom about the pulse that interacted.
Applying coupling pulses, one can induce a fast switching
on the dark resonance (as fast as several tp’s) for any
particular pulse in a pulse train of B1�t� pulses. Then all
protected pulses of the probe will pass through the sample
while the nonprotected pulses will be absorbed.
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