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We reveal the full phase structure of the effective field theory for QCD, based on hidden local sym-
metry (HLS) through the one-loop renormalization group equation including quadratic divergences. We
then show that vector dominance (VD) is not a sacred discipline of the effective field theory but rather
an accidental phenomenon peculiar to three-flavored QCD. In particular, the chiral symmetry restoration
in the HLS model takes place in a wide phase boundary surface, on which the VD is nowhere realized.
This suggests that VD may not be valid for chiral symmetry restoration in hot and/or dense QCD.
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Since Sakurai advocated vector dominance (VD) as well
as vector meson universality [1], VD has been a widely
accepted notion in describing vector meson phenomena in
hadron physics. In fact, several models such as the gauged
sigma model [2] are based on VD to introduce the photon
field into the Lagrangian. Moreover, it is often taken for
granted in analyzing the dilepton spectra to probe the phase
of quark-gluon plasma for the hot and/or dense QCD [3].

As far as the well-established hadron physics for the
Nf � 3 case is concerned, it in fact has been extremely
successful in many processes such as the electromagnetic
form factor of the pion [1] and the electromagnetic pg

transition form factor (see, e.g., Ref. [4]), etc. However,
there has been no theoretical justification for VD and as
it stands might be no more than a mnemonic useful only
for the three-flavored QCD at zero temperature/density.
Actually, VD is already violated for the three-flavored
QCD for the anomalous processes such as g ! 3p�p0 !

2g [5–7] and the vp transition form factor (see, e.g.,
Ref. [8]). This strongly suggests that VD may not be a sa-
cred discipline of hadron physics but may largely be vio-
lated in the different parameter space than the ordinary
three-flavored QCD (nonanomalous processes) such as in
the large Nf QCD, Nf being number of massless flavors,
and hot and/or dense QCD where the chiral symmetry
restoration is expected to occur. It is rather crucial whether
or not VD is still valid when probing such a chiral sym-
metry restoration through vector meson properties [9,10].

Here we emphasize that in the hidden local symmetry
(HLS) model [6,11] the vector mesons are formulated pre-
cisely as gauge bosons; nevertheless, VD as well as the
universality is merely a dynamical consequence character-
ized by the parameter choice a � 2.

In this paper we reveal the full phase structure of the
effective field theory including the vector mesons, based
on the one-loop renormalization group equation (RGE) of
the HLS model. It turns out that in view of the phase dia-
gram VD is very accidentally realized and only for Nf � 3
QCD. On the other hand, we find a wide phase boundary
surface of chiral symmetry restoration in the HLS model,
on which the VD is nowhere realized. Furthermore, only a
single point of the phase boundary is shown to be selected
0031-9007�01�87(15)�152001(4)$15.00
by QCD through the Wilsonian matching [12], which ac-
tually coincides with the vector manifestation (VM) [13]
realized for large Nf QCD where VD is badly violated with
a � 1.

Let us first describe the HLS model based on the
Gglobal 3 Hlocal symmetry, where G � SU�Nf�L 3

SU�Nf �R is the global chiral symmetry and H � SU�Nf�V
is the HLS. The basic quantities are the gauge bosons
rm � ra

mTa of the HLS and two SU�Nf�-matrix valued
variables jL and jR. They are parametrized as jL,R �
eis�Fs e7ip�Fp , where p � paTa denote the pseudo-
scalar Nambu-Goldstone (NG) bosons associated with
the spontaneous breaking of G and s � saTa the NG
bosons absorbed into the HLS gauge bosons rm which
are identified with the vector mesons. Fp and Fs are
relevant decay constants, and the parameter a is defined
as a � F2

s�F2
p . jL and jR transform as jL,R�x� !

h�x�jL,R�x�gy
L,R, where h�x� [ Hlocal and gL,R [

Gglobal. The covariant derivatives of jL,R are defined by
DmjL � ≠mjL 2 igrmjL 1 ijLLm, and similarly with
replacement L $ R, Lm $ Rm, where g is the HLS
gauge coupling, and Lm and Rm denote the external
gauge fields gauging the Gglobal symmetry.

The HLS Lagrangian is given by [6,11]

L � F2
p tr�â�mâ

m
�� 1 F2

s tr�âkmâ
m

k � 1 Lkin�rm� ,
(1)

where Lkin�rm� denotes the kinetic term of rm and

â
m
�

k

� �DmjR ? j
y
R 7 DmjL ? j

y
L���2i� . (2)

By taking the unitary gauge, j
y
L � jR (s � 0), the La-

grangian in Eq. (1) gives the following tree level relations
for the vector meson mass mr, the r-g transition strength
gr, the rpp coupling constant grpp , and the direct gpp

coupling constant ggpp : [6,11]

m2
r � ag2F2

p , grpp �
1
2 ag ,

gr � agF2
p , ggpp �

µ
1 2

a

2

∂
e ,

(3)

where e is the electromagnetic coupling constant.
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Expressions for grpp and gr in Eq. (3) lead to the cele-
brated Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
(KSRF) relation [14] (version I):

gr � 2F2
pgrpp , (4)

independently of the parameter a. This is the low energy
theorem of the HLS [15], which was proved at one-loop
[16], and then at any loop order [17]. On the other hand,
making a dynamical assumption of a parameter choice
a � 2, the following outstanding phenomenological
facts are reproduced from Eq. (3) [6,11]: (i) grpp � g
(universality of the r coupling) [1]; (ii) m2

r � 2g2
rppF2

p

(KSRF II) [14]; (iii) ggpp � 0 (vector dominance of the
electromagnetic form factor of the p) [1]. Thus, even
though the vector mesons are gauge bosons in the HLS
model, VD as well as the universality is not an automatic
consequence but rather a dynamical one of a parameter
choice of a � 2.

Actually, due to quantum corrections, the parameters
change their values by the energy scale, which are de-
termined by the RGE’s. Accordingly, values of the pa-
rameters Fp , a, and g cannot be freely chosen, although
they are independent at tree level. Thus, we first study
the RG flows of the parameters and the phase structure of
the HLS to classify the parameter space. Here we stress
that, thanks to the gauge symmetry in the HLS model, it is
possible to perform a systematic loop expansion including
the vector mesons in addition to the pseudoscalar mesons
[7,12,16,18,19] in a way to extend the chiral perturbation
theory [20]. There the loop expansion corresponds to the
derivative expansion, so that the one-loop calculation of
the RGE is reliable in the low energy region.

As shown in Refs. [12,21] it is important to include
quadratic divergences in calculating the quantum correc-
tions. Because of quadratic divergences in the HLS dy-
namics, it follows that even if the bare theory defined by
the cutoff L is written as if it were in the broken phase
characterized by F2

p �L� . 0, the quantum theory can be
in the symmetric phase characterized by F2

p �0� � 0 [21].
The one-loop RGE’s for Fp , a, and g including quadratic
divergences are given by [12,21]

m
dF2

p

dm
� C�3a2g2F2

p 1 2�2 2 a�m2� ,

m
da

dm
� 2C�a 2 1�

3

∑
3a�a 1 1�g2 2 �3a 2 1�

m2

F2
p

∏
,

(5)

m
dg2

dm
� 2C

87 2 a2

6
g4,

where C � Nf��2�4p�2� and m is the renormalization
scale. It is convenient to use the following quantities:

X�m� � Cm2�F2
p�m�, G�m� � Cg2�m� . (6)
152001-2
Then, the RGE’s in Eq. (5) are rewritten as

m
dX
dm

� �2 2 3a2G�X 2 2�2 2 a�X2,

m
da
dm

� 2�a 2 1� �3a�a 1 1�G 2 �3a 2 1�X� , (7)

m
dG
dm

� 2
87 2 a2

6
G2.

It should be noticed that the RGE’s in Eq. (7) are valid
above the r mass scale mr, where mr is defined by
the on-shell condition m2

r � a�mr�g2�mr �F2
p �mr�. In

terms of X, a, and G, the on-shell condition becomes
a�mr �G�mr� � X�mr�. Then the region where the
RGE’s in Eq. (7) are valid is specified by the condition
a�m�G�m� # X�m�.

Seeking the parameters for which all right-hand sides of
three RGE’s in Eq. (7) vanish simultaneously, we obtain
three fixed points and one fixed line in the physical region
and one fixed point in the unphysical region (i.e., a , 0
and X , 0). Those in the physical region (labeled by
i � 1, . . . , 4) are given by

�X�
i , a�

i ,G�
i � � �0, any, 0�, �1, 1, 0�,

µ
3
5

,
1
3

, 0

∂
,

µ
2�2 1 45

p
87 �

4097
,
p

87,
2�11919 2 176

p
87 �

1069317

∂
. (8)

Note that G � 0 is a fixed point of the RGE for G, and
a � 1 is the one for a. Hence, RG flows on the G � 0
plane and the a � 1 plane are confined in the respective
planes.

Let us first study the phase structure of the HLS for
G � 0 (see Fig. 1) in which case mr vanishes and the
RGE’s (7) are valid all the way down to the low energy
limit, m $ mr � 0. There are one fixed line and two fixed
points [first three in Eq. (8)]. Generally, the phase bound-
ary is specified by F2

p �0� � 0, namely, governed by the
infrared fixed point such that X�0� fi 0 [see Eq. (6)]. Such
a fixed point is the point �X�

2 , a�
2,G�

2 � � �1, 1, 0�, which is
nothing but the VM point [13]. Then the phase bound-
ary is given by the RG flows entering �X�

2 , a�
2, G�

2 �. Since
a � 1�3 is a fixed point of the RGE for a in Eq. (7), the
RG flows for a , 1�3 cannot enter �X�

2 ,a�
2, G�

2 �. Hence
there is no phase boundary specified by F2

p�0� � 0 in the
a , 1�3 region. Instead, F2

s�0� vanishes even though
F2

p �0� fi 0, namely, a�0� � X�0� � 0. Then the phase
boundary for a , 1�3 is given by the RG flow entering
the point �X, a, G� � �0, 0, 0�. In Fig. 1 the phase bound-
ary is drawn by the dashed line, which divides the phases
into the symmetric phase [22] (upper side; cross-hatched
area) and the broken one (lower side).

In the case of G . 0, on the other hand, the r becomes
massive (mr fi 0), and thus decouples at the mr scale.
Below the mr scale a and G no longer run, while Fp

still runs by the p loop effect. Thus, to study the phase
152001-2
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FIG. 1. Phase diagram on the G � 0 plane. Arrows on the
flows are written from the ultraviolet to the infrared. Gray line
denotes the fixed line �X�

1 , a�
1, G

�
1 � � �0, any, 0�. Points indicated

by © and ≠ (VM point) denote the fixed points �3�5, 1�3, 0�
and �1, 1, 0�, respectively. Dashed lines divide the broken phase
(lower side) and the symmetric phase (upper side; cross-hatched
area): Flows drawn by thick lines are in the broken phase,
while those by thin lines are in the symmetric phase. The
point indicated by Ø, �X , a, G� � �0, 2, 0�, correspond to the
VD, a�0� � 2.

structure for G . 0 we need the RGE for Fp for m , mr

(denoted by F�p�
p ). This is given by d�F�p�

p �2�dm2 � 2C
[21], which is readily solved as

�F�p�
p �m��2 � �F�p�

p �mr��2 2 2C�m2
r 2 m2� . (9)

Then the quadratic divergence [second term in Eq. (9)] of
the p loop can give rise to chiral symmetry restoration
F�p�

p �0� � 0 [21]. Thus, the phase boundary is specified
by the condition �F�p�

p �mr��2 � 2Cm2
r . Note that the rela-

tion between �F�p�
p �mr��2 and F2

p�mr �, including the finite
renormalization effect, is given by [12]

�F�p�
p �mr��2 � F2

p �mr� 1 Ca�mr�m2
r , (10)

which is converted into the condition for X�mr� and
a�mr �. Combination of this with the on-shell condition
specifies the phase boundary in the full �X, a, G� space,
which is given by the collection of the RG flows entering
points on the line specified by

2 2 a�mr� � 1�X�mr� ,

a�mr�G�mr � � X�mr� .
(11)

Such a surface can be imagined from Figs. 1 and 2.
We now study the a � 1 plane (see Fig. 2). The flows

stop at the on shell of r (G � X; dot-dashed line in Fig. 2)
and should be switched over to RGE of F�p�

p �m� as men-
tioned above. From Eq. (11) with a � 1, the flow entering
�X, G� � �1, 1� (dashed line) is the phase boundary which
distinguishes the broken phase (lower side) from the sym-
metric one (upper side; cross-hatched area).

For a , 1, RG flows approach to the fixed point
�X�

3 , a�
3, G�

3 � � �3�5, 1�3, 0� in the idealized high energy
limit (m ! `).

For a . 1, RG flows in the broken phase approach to
�X�

4 , a�
4, G�

4 � � �0.2, 9.3, 0.02�, which is precisely the fixed
152001-3
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FIG. 2. Phase diagram on the a � 1 plane. Arrows on the
flows are written from the ultraviolet to the infrared. Point indi-
cated by ≠ denotes the VM fixed point �X�

2 , a�
2, G�

2� � �1, 1, 0�.
Flows drawn by thick lines are in the broken phase, while those
by thin lines are in the symmetric phase (cross-hatched area).
Dot-dashed line corresponds to the on-shell condition G � X .
In the shaded area the RGE’s (7) are not valid since r has
already decoupled. Point indicated by Ø, �1�2, 1, 1�2�, corre-
sponds to the VD, a�0� � 2 [see Eq. (13)].

point that the RG flow of the Nf � 3 QCD belongs to.
To see how the RG flow of Nf � 3 QCD approaches to
this fixed point, we show the m dependence of X�m� in
Fig. 3 where values of the parameters at m � mr are set
to be ���X�mr�, a�mr �, G�mr ���� � �0.46, 1.22, 0.38� through
Wilsonian matching with the underlying QCD [12]. The
values of X close to 1�2 in the physical region (mr #

m # L) are very unstable against RGE flow, and, hence,
X � 1�2 is realized in a very accidental way.

Let us now discuss the VD which is characterized by
a�0� � 2. Since F2

s does not run for m , mr while F2
p

does, we have [12]

a�m� �

(
F2

s�m��F2
p�m� �m . mr�

F2
s�mr���F�p�

p �m��2 �m , mr� .
(12)

Then, by using Eqs. (9) and (10), a�0� is given by

a�0� � a�mr ���1 1 a�mr�X�mr� 2 2X�mr�� . (13)

log (µ / m ρ)
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FIG. 3. Scale dependence of X�m� in QCD with Nf � 3.
Shaded area denotes the physical region, mr # m # L. Flow
shown by the dashed line is obtained by extending it to the
(unphysical) infrared region by taking literally the RGE’s in
Eq. (7). In an idealized high energy limit the flow approaches
to the fixed point X�

4 � 2�2 1 45
p

87 ��4097 � 0.2.
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This implies that the VD [a�0� � 2] is realized only for
���X�mr�, a�mr ���� � �1�2, any� or �any, 2�.

In Nf � 3 QCD, the parameters at mr scale,
���X�mr�, a�mr �, G�mr���� � �0.46, 1.22, 0.38�, happen to be
near such a VD point. However, the RG flow actually
belongs to the fixed point �X�

4 , a�
4, G�

4� which is far away
from the VD value. Thus, the VD in Nf � 3 QCD is acci-
dentally realized by X�mr� � 1�2 which is very unstable
against the RG flow (see Fig. 3). For G � 0 (Fig. 1)
the VD holds only if the parameters are (accidentally)
chosen to be on the RG flow entering �X, a, G� � �0, 2, 0�
(indicated by Ø) which is an end point of the line
���X�mr�, a�mr ���� � �any, 2�. For a � 1 (Fig. 2), on the
other hand, the VD point �X, a, G� � �1�2, 1, 1�2� (indi-
cated by Ø) lies on the line ���X�mr�, a�mr���� � �1�2, any�.

Then, phase diagrams in Figs. 1 and 2 and their exten-
sions to the entire parameter space (including Fig. 3) show
that neither X�mr� � 1�2 nor a�mr� � 2 is a special point
in the parameter space of the HLS. Thus, we conclude that
the VD as well as the universality can be satisfied only
accidentally. Therefore, when we change the parameter
of QCD, the VD is generally violated. In particular, nei-
ther X�mr� � 1�2 nor a�mr� � 2 is satisfied on the phase
boundary surface characterized by Eq. (11) where the chi-
ral restoration takes place in the HLS model. Therefore,
VD is nowhere realized on the chiral restoration surface.

Moreover, when the HLS is matched with QCD, only the
point �X�

2 ,a�
2, G�

2 � � �1, 1, 0�, the VM point, on the phase
boundary is selected, since the axial vector and vector cur-
rent correlators in HLS can be matched with those in QCD
only at that point [13]. Therefore, QCD predicts a�0� � 1,
i.e., a large violation of the VD at chiral restoration. Actu-
ally, for the chiral restoration in the large Nf QCD [23,24],
the VM can in fact take place [13], and thus the VD is badly
violated.

Finally, we suggest that, if the VM takes place in other
chiral restoration such as the one in the hot and/or dense
QCD, the VD should be largely violated near the critical
point.

This work is supported in part by Grant-in-Aid for
Scientific Research (B) No. 11695030 (K. Y.), (A)
No. 12014206 (K. Y.), and (A) No. 12740144 (M. H.).

[1] See J. J. Sakurai, Currents and Mesons (University of
Chicago, Chicago, 1969).
152001-4
[2] See, e.g., U. G. Meissner, Phys. Rep. 161, 213 (1988);
O. Kaymakcalan, S. Rajeev, and J. Schechter, Phys.
Rev. D 30, 594 (1984).

[3] See, e.g., R. D. Pisarski, Phys. Rev. D 52, R3773 (1995);
F. Klingl, N. Kaiser, and W. Weise, Nucl. Phys. A624, 527
(1997); R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1
(2000).

[4] CELLO Collaboration, H. J. Behrend et al., Z. Phys. C 49,
401 (1991).

[5] T. Fujiwara, T. Kugo, H. Terao, S. Uehara, and
K. Yamawaki, Prog. Theor. Phys. 73, 926 (1985).

[6] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164,
217 (1988).

[7] M. Harada and K. Yamawaki (to be published).
[8] A. Bramon, A. Grau, and G. Pancheri, Phys. Lett. B 277,

353 (1992); M. Bando and M. Harada, Prog. Theor. Phys.
92, 583 (1994); Phys. Rev. D 49, 6096 (1994).

[9] R. D. Pisarski, Phys. Lett. B 110, 155 (1982); hep-ph/
9503330.

[10] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720
(1991); Phys. Rep. 269, 333 (1996); nucl-th/0101015;
hep-ph/0103102.

[11] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and
T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985).

[12] M. Harada and K. Yamawaki, Phys. Rev. D 64, 014023
(2001).

[13] M. Harada and K. Yamawaki, Phys. Rev. Lett. 86, 757
(2001).

[14] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255
(1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

[15] M. Bando, T. Kugo, and K. Yamawaki, Nucl. Phys. B259,
493 (1985); Prog. Theor. Phys. 73, 1541 (1985).

[16] M. Harada and K. Yamawaki, Phys. Lett. B 297, 151
(1992).

[17] M. Harada, T. Kugo, and K. Yamawaki, Phys. Rev. Lett.
71, 1299 (1993); Prog. Theor. Phys. 91, 801 (1994).

[18] H. Georgi, Phys. Rev. Lett. 63, 1917 (1989).
[19] M. Tanabashi, Phys. Lett. B 316, 534 (1993).
[20] S. Weinberg, Physica (Amsterdam) 96A, 327 (1979);

J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
(1984).

[21] M. Harada and K. Yamawaki, Phys. Rev. Lett. 83, 3374
(1999).

[22] Here “symmetric phase” means that F2
p �m� � 0 or

F2
s�m� � 0, namely, 1�X�m� � F2

p �m��Cm2 � 0 or
a�m� � 0 for nonzero (finite) m.

[23] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie,
Prog. Theor. Phys. Suppl. 131, 415 (1998), and references
cited therein.

[24] T. Appelquist, J. Terning, and L. C. Wijewardhana, Phys.
Rev. Lett. 77, 1214 (1996).
152001-4


