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A symbolic language allowing one to solve statistical problems for the systems with non-Abelian
braidlike topology in 2 1 1 dimensions is developed. The approach is based on the similarity between a
growing braid and a “heap of colored pieces.” As an application, the problem of a vortex glass transition
in high-Tc superconductors is reexamined on a microscopic level.
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Statistics of ensembles of uncrossable linear objects with
topological constraints has a very broad application area
ranging from problems of self-diffusion of directed poly-
mer chains in flows and nematiclike textures to dynamical
and topological aspects of vortex glasses in high tempera-
ture superconductors [1]. In this Letter we propose a mi-
croscopic approach to a diffusive dynamics of entangled
uncrossable lines of an arbitrary physical nature.

It is well known that the main difficulties in the sta-
tistical topology of linear uncrossable objects are due to
two facts: (a) the topological constraints are nonlocal and
(b) different entanglements do not commute. The diffi-
culty (a) can be resolved by introducing (Abelian) gauss-
like topological invariant properly counting windings of
one chain around the other, while the circumstance (b) now
creates a major problem in the constructive approach to
topological theories beyond the Abelian approximation.

We develop a symbolic language which would permit us
to construct the objects with a braidlike topology in 2 1 1
dimension and to solve the simplest statistical problems
with the noncommutative nature of topological constraints
properly taken into account. The results are applied to
a reexamination of the problem of a vortex glass transi-
tion in high-Tc superconductors [2]. Recall briefly that
in CuO2-based high-Tc superconductors in fields less than
Hc2 there exists a region where the Abrikosov flux lattice
is molten, but the sample of the supereconductor demon-
strates the absence of the conductivity. This effect is ex-
plained by the highly entangled state of flux lines due to
their topological constraints [2].

The most attention in our investigation is paid to a
quantitative estimation of a characteristic time of self-
disentanglement of a particular “test” chain in a bunch of
braided directed chains. We distinguish between two situa-
tions: (i) all lines in a bunch are parallel, forming a lattice,
except one test line randomly entangled with the others,
and (ii) no chain is fixed in a bunch of braided lines and
any chain winds randomly like a test one. We compute the
characteristic disentanglement times tsi and tco in cases
(i) and (ii) and demonstrate the absence of the qualitative
difference between tsi and tco. This contradicts in detail
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with the statement of [2] on the qualitative difference be-
tween tsi and tco obtained in the framework of a scaling
analysis. However, our result does not destroy the physical
conclusions of Ref. [2] about the possibility of topologi-
cal glass transition in the entangled flux state in high-Tc

superconductors. According to the above-mentioned cases
(i) and (ii) we define, respectively, models I and II.

Model I is as follows: Take a square lattice in the �xy�
plane with a spacing c and put the uncrossable obstacles in
all vertices of this lattice. Consider a symmetric random
walk with the step length c on a dual lattice shifted by c

2 in
both x and y directions. Let Psi�N � be the probability of the
fact that after N steps on the dual lattice the random path is
closed and disentangled with respect to the obstacles. It is
clear that in the �2 1 1�-dimensional [�2 1 1�D] “space-
time” �2�x, y� 3 �1�t� this model describes the statistics
of “world lines” (time-ordered paths) of a single particle
jumping on a square lattice in �xy� projection, making each
time a step toward the t axis and topologically interacting
with the square lattice of infinitely long straight lines. The
�xy� section of this model is shown in Fig. 1.

It is known [3] that any topological state of a given
path in the lattice of obstacles with coordinational num-
ber z is in one-to-one correspondence with some vertex
of z-branching Cayley tree. In particular, the N -step tra-
jectory is not entangled with respect to the lattice of ob-
stacles if, and only if, the image of this trajectory on a
Cayley tree is closed (i.e., the path on a Cayley tree starts

FIG. 1. The �xy� projection of a path (solid line) entangled
with a square lattice of obstacles (black points). The primitive
path is shown by a dashed line.
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at the origin and returns again to the origin of the tree after
N steps).

The vertices of the Cayley tree can be naturally pa-
rametrized by the words constructed from elementary
units—the letters (or “generators”) of the group with spe-
cific commutation relations. The fact that the Cayley tree
has no loops means that there are no commutation relations
between letters, and the group associated with this Cayley
tree is “free.” For example, the 4-branching Cayley tree
corresponding to the square lattice of obstacles shown
in Fig. 1 is based on an “alphabet”— a set of two gen-
erators and their inverses S � �g1, g2, g21

1 , g21
2 �, where

�g61
1 , g61

2 � do not commute and g1g21
1 � g2g21

2 � 1.
The uniform random walk in the lattice of obstacles is

mapped to the random word constructed by writing let-
ters one after another taken from the set S with uniform
probability 1

4 . For example, the random walk in Fig. 1 cor-
responds to the random word W :

W � g1g21
2 g21

1 g1g21
2 g2g2g1

� g1�g�21
2 �g�21

1 g�1� �g�21
2 g�2�g�2�g2 � g1g2 .

It is easy to show that the length of the shortest (i.e., irre-
ducible or primitive) word coincides with the shortest (i.e.,
geodesic) distance along the 4-branching Cayley graph of
the group G4. In Fig. 1 the primitive path is shown by the
dashed line.

In general the average “degree of entanglement” of an
N-step path in the lattice of obstacles with coordinational
number z for N ¿ 1 is characterized by the average
(geodesic) distance from the root of the Cayley tree with
z branches [3] �Lsi�N�	 � z22

z N . Hence, the normalized
“complexity” �lsi	 of a typical topological state of a path
can be defined as

�lsi	 
 lim
N!`

�Lsi�N�	
N

�
z 2 2

z
. (1)

The probability Psi�N� to find an N-step random walk
in a trivial topological state in the lattice of obstacles co-
incides with the probability to find the randomly gener-
ated N-letter word completely reducible. For diffusion on
a z-branching Cayley tree, Psi�N � determines the proba-
bility for an N-step symmetric random walk to return to
the origin. This probability has been computed many
times —see, for example [4],

Psi�N� �
2
p

2 p
p

p �1 2 4pq�
aN

N3�2 , (2)

where q � 1
z and p 
 1 2 q � z21

z are the probabilities
of steps “forward” to and “backward” from the origin of
the Cayley tree; a � 2

p
pq. L is defined as a span of the

N-step random walk in �xy� projection. In physical terms
of the original “vortex problem,”

p
L2 is the average size

of thermal fluctuations of the vortex line. Hence, we can
set N � L2

c2 and estimate the typical time of disentangle-
ment tsi � 1

Psi�N� of a single vortex line in an ensemble of
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immobile uncrossable lines for z � 4 as follows:

tsi �
µ

L2

c2

∂3�2µ
2
p

3

∂L2�c2

. (3)

In contrast to model I, model II describes collective dy-
namics of the world lines and ultimately leads to the con-
sideration of the �2 1 1�-dimensional (“surface”) braid
group B2D

n11. The group B2D
n11 has 2n2 1 2n generators

s
�x�
ij ,s

� y�
ij and their inverses with standard “braiding” rela-

tions [5] (�i, j� [ �1, n 1 1�). The geometric representa-
tion of generators of B2D

n11 is shown in Fig. 2a. Graphically
the braid is represented by a set of strings, going upwards
in accordance with the growth of a braid length—see
Fig. 3a. An element of the braid group B2D

n11 is set by
a word in the alphabet �s�x�

11 , s
� y�
11 , . . .�. By the length N

of a braid, we call the length of a word in a given record
of the braid and, by the irreducible length (or primitive
length), we call the shortest length of a word in which the
braid can be written. The irreducible length can also be
viewed as a distance from the unity on the graph of the
group B2D

n11 —in the same manner as for a Cayley tree.
We now define a symmetric random walk on a set of gen-

erators (“letters”) �s�x�
11 , s

� y�
11 , . . .� with the transition proba-

bility 1
2n212n . Namely, we raise recursively an N-letter

random word (i.e., random braid) W , adding step-by-step
the letters (say, from the right-hand side) to a growing
word. The probability that the N-letter word is completely
contractible (i.e., has a zero’s primitive length) defines
the probability to have a topologically trivial braid of the
record length N .

Our main tool in the investigation of the braid group is
the so-called locally free group [6]. The �2 1 1�D (sur-
face) locally free group LF 2D

n is obtained from the braid
group B2D

n11 by omitting the braiding relations. Thus the
group LF 2D

n has 2n2 1 2n generators, f
�x�
ij , f

� y�
ij , and

their inverses, (�i, j� [ �1, n 1 1�). The geometric in-
terpretation of generators is given in Fig. 2a. The com-
mutation relations are set by the rules: nearest-neighbor
generators (letters) do not commute, while distant genera-
tors do. Schematically these rules are depicted in Fig. 4.

There is a one-to-one correspondence between words in
the locally free group and colored heaps whose elements

are either “white,” f
�x,y�
ij , or “black,” � f

�x,y�
ij �21. Any word

FIG. 2. The generators of the surface groups B2D
n (a) and

LF 2D
n11 (b).
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FIG. 3. (a) The �2 1 1�D braid. (b) The �2 1 1�D colored
heap.

written in terms of letters-generators of the group LF 2D
n

represents a configuration of a colored heap (see Fig. 3b)
in a box at the base of n 3 n cells. And, vice versa, any
heap uniquely defines some sequence of letters, i.e., a word
in the group LF 2D

n . The configuration of a heap with
black elements following immediately after white ones in
the same column is forbidden.

For the uniform Markov dynamics on the set of braid
group generators we can compute the average primitive
(i.e., irreducible) length �Lco�N�	 of the N-letter word,
characterizing the degree of entanglement of threads in
a braid [compare to the definition of �Lsi�N�	]. Let us
show how the concept of the locally free group can help in
estimating �Lco�N�	.

The group LF 2D
n has less relations than B2D

n11.
Hence, the number of distinct words of primitive length
Lco�N jB2D

n11� in the braid group is bounded from above
by the number of distinct words of the same primitive
length Lco�N jL F 2D

n � in the locally free group. Thus,
some words being irreducible in the group LF 2D

n can
be reduced by applying extra braiding relations from the
group B2D

n11, and the following inequality holds:

Lco�N jB2D
n11� # Lco�N jL F 2D

n � . (4)

At the same time, by construction (compare Figs. 2a and
2b) f

�x,y�
i,j � �s�x,y�

i,j �2. Thus, the number of distinct words
of length 2Lco in the braid group is bounded from below
by the number of distinct words of the length Lco in the
locally free group [6], which results in the inequality

�Lco�N j LF 2D
n �	 # 2�Lco�N jB2D

n11�	 . (5)

Equations (4) and (5) allow us to get the bilateral estima-
tion for the average primitive length �Lco�N jB2D

n11�	 of the

FIG. 4. Commutation relations among generators of a �2 1 1�-
dimensional locally free group.
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N-step random walk on the surface braid group B2D
n11 and

hence to measure the average degree of entanglement in a
bunch of randomly wreathed directed lines.

The computation of �Lco�N j LF 2D
n �	 involves the con-

cept of the roof of the heap [7]. In physical terms a roof
consists of a set of “topmost” elements which can be re-
moved from the heap without disturbing the rest. The pro-
jection of a roof onto the �xy� plane for some particular
configuration of the topmost elements is shown in Fig. 5.
Let us stress that local heights (measured from the bottom
of the box) of different roof blocks might be different.

The process of growth of a heap (i.e., the random walk
on the group LF 2D

n ) consists of randomly adding step-by-
step new black or white blocks to the roof [7,8]. Hence
the dynamics of a heap is controlled by the dynamics of a
roof. For a particular configuration of a roof we define the
“size” of a roof T (i.e., the number of marked segments
in Fig. 5) and the number of empty segments ni having i
marked neighbors (apparently, ni � 0 ; i $ 3). In Fig. 5,
one has n � 5, n0 � 6, n1 � 25, n2 � 17; T � 12. The
values T , ni obey the conservation conditions:

Ω
n0 1 n1 1 n2 1 T � 2n2 1 2n
6T 2 8�n 1 1� # n1 1 2n2 # 6T

. (6)

For any configuration the dynamics of a roof’s size is
described by local increments DT :8>><

>>:
DT � 11 with probability n0

2n212n

DT � 0 with probability n11T
2n212n

DT � 21 with probability n2

2n212n

.

Taking Eq. (6) into account, we can write

DT �
n0 2 n2

2n2 1 2n
�

2n2 2 �n1 1 2n2�
2n2 1 2n

.

In a stationary case, one has �DT	 � 0, which permits one
to get, in the limit n ¿ 1, the asymptotics of the average
roof size �T	:

�T	 �
2n2

7
. (7)

Dynamics of the roof determines the dynamics of the
whole heap. Return to the random walk on LF 2D

n and
compute the conditional change of the primitive length
Lco�N j LF 2D

n � for one step of the random walk:

FIG. 5. A particular configuration of a roof of �2 1 1�D heap
is shown by marked segments.
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8<
:

DLco�N jL F 2D
n � � 11 with probability 1 2

T
2�2n212n�

DLco�N jL F 2D
n � � 21 with probability T

2�2n212n�

. (8)
Using (7), one obtains, in a steady state for N ¿ n ¿ 1,

�Lco�N j LF 2D
n �	 � N�DLco�N jL F 2D

n �	

� N

∑
1 2

�T	
2n2 1 2n

∏
�

6
7

N . (9)

Thus, according to (4) and (5), one arrives at the bilateral
estimation of the average length of the primitive word for
the N-step random walk on the surface braid group

3
7

# lim
N!`
n!`

�Lco�N jB2D
n �	

N
#

6
7

. (10)

The quantity �lco	 � lim N!`
n!`

�Lco�N jB2D
n �	

N characterizes the

complexity of the entangled state of threads. By comparing
(10) to (1), one concludes that the average topological
state of a braid �Lco�N jB2D

n �	 obtained in the course of
collective motion of all lines has the same asymptotics in
N as the one from a single line motion and interpolates
between entangled states in effective lattices of obstacles
with coordinational numbers zeff, where

7
2 # zeff # 14 . (11)

Equations (3), (10), and (11) allow us to estimate from
above the characteristic time of disentanglement in a bunch
of vortex lines, considered as a braid of directed random
walks. Recall that the random growth of a braid is in-
terpreted as an N-step uniform random walk on a sur-
face braid group B2D

n11. The topological state of a braid
is uniquely characterized by a primitive (irreducible) word
wN in terms of generators of B2D

n11. The disentangled state
of two neighboring trajectories means (for the group B2D

n11)
that the primitive word wN does not contain the corre-
sponding neighboring generators, say s

�x�
i,j , s

� y�
i,j , �s�x�

i,j �21,

and �s�x�
i,j �21 for some �i, j� [ 1, n 1 1.

We compute the typical time tco of disentanglement of
two neighboring threads in a braid, appealing to the geo-
metrical image instead of playing with rigorous algebraic
estimates. It seems to be evident that the time of disen-
tanglement of any part of a braid can be roughly estimated
from above by the time of complete disentanglement of
all threads in a bunch. In terms of a random walk on a
braid group B2D

n11, the simultaneous disentanglement of all
lines means that the primitive word wN has zero length.
By using the established relation between braids, heaps,
and effective lattices of obstacles reflected in (11), one can
claim the following upper estimate for tco computed at
zeff � 14:

tup
co �

µ
L2

c2

∂3�2µ
7

p
13

∂L2�c2

. (12)

Comparing (2) and (12), one has lim L
c !`

c2

L2 ln tco

tsi
� 0.5.
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In conclusion let us emphasize that the random braid-
ing (model II) can be analyzed within the framework of
a symbolic dynamics on the locally free group describing
the growth of a heap of colored pieces. The probability of
having a disentangled state of two vortex lines can be es-
timated from above by the probability of having no pieces
(elements) in a given column of a heap. This model seems
to be a natural discretization of a standard ballistic depo-
sition process of a Kardar-Parisi-Zhang–type (KPZ-type)
[9]. In the context of a microscopic approach developed
above, one can easily check whether the scaling conjec-
ture of [2] is correct. Considering the collective dynamics
of vortex lines, Obukhov and Rubinstein supposed the exis-
tence of some macroscopic domains where all neighboring
vortices are mutually disentangled (Fig. 3 in [2]). In our
terms, the existence of such disentangled configurations of
vortex lines leads to strong fluctuations of the roof’s width
�dh	. However, it is known for KPZ-type models that fluc-
tuations of the roof are bounded: lim�h	!`

�dh	
�h	 � 0, where

�h	 is the average height of a heap, which hints at a possible
source of inconsistency in the scaling arguments of [2].

Moreover, model II can be easily modified to take into
account the possibility of the vortex line breaking. The
rupture of vortex lines relaxing the entangled state can be
modeled by random “recoloring” of elements: white !

black and black ! white in an already created heap, which
leads to additional cancellation of the heap’s elements.
By defining the probability r � e2E�T of a random re-
coloring of an element of a heap (E is associated with
an energy of vortex line rupture), we modify the proba-
bility in the last line of (8): T

2�2n212n� !
T

2�2n212n� 1 r
which leads to �Lco�N j LF 2D

n �	 � N � 6
7 2 r� [compare

to (9)]. As one can see, for E , Ecr � T ln 7
6 , one has

�Lco�N j LF 2D
n �	 � o�N� and hence the heavily entan-

gled state is completely relaxed.
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