Roos and Tringides Reply: There are three questions raised in [1] about the interlayer probability $p = \frac{v_s}{a}$ $\nu_t e^{-(\Delta E_s/kT)}$ for Ag/Ag(111): (i) Is the prefactor ratio $\nu_s/\nu_t \gg 1$ as suggested in [2–4]? (ii) What is the correct theory to describe second layer nucleation? (iii) Why does the revised theory [5,6], when applied to Ref. [3], give unphysically high values for ν_s/ν_t and ΔE_s ? Since Ref. [2] deals with question (i), our reply focuses on $\nu_s/\nu_t \gg 1$. We have expressed the main conclusion based on second layer nucleation experiments of Ref. [2] as $\nu_s/\nu_t \gg 1$ since the result $\nu_s/\nu_t \gg 1$ does not depend on the theory but a specific value does. A specific value $\nu_s / \nu_t = 100$ is deduced by considering two additional experiments [2]. Although the revised theory [5] gives a different value, it reinforces the conclusion $\nu_s/\nu_t \gg 1$. Question (ii) was discussed in the criticism [5,6] of the earlier theory [7]. The third question is still an open challenge.

The conclusion $\nu_s/\nu_t \gg 1$ for Ag/Ag(111) is supported by three independent experiments: the analysis of second layer nucleation experiments [2–4], the decay of the reflection high-energy electron diffraction (RHEED) intensity, and the size of the denuded zone [2]. Furthermore, there are three methods of analyzing the second layer nucleation experiments. Reference [1] discusses only one of the three methods, a small part of [2]. This method is the least robust because it uses only part of the experimental information; however, we will show that, even with this method, $\nu_s/\nu_t \gg 1$ holds.

In the original second layer nucleation experiment [3], fits to the fractional occupation curves have shown that $\nu_s/\nu_t = 50$, but with large uncertainty. Later, a method was proposed [4] that allows the extraction of v_s/v_t and ΔE_s uniquely. Since this method is far more exact than Eq. (1) of Ref. $[2]$ (criticized in $[1]$), we review the method. From the expression of the nucleation rate $\Omega = (\pi^2/2)F^2R^5/pD_t$ [5] and the limiting values Ω_{max} (when all the islands in the ensemble have second layer islands) and Ω_{min} (when none of the islands in the ensemble have second layer occupation) in the experiment of [3], the dependence of the corresponding island sizes R_{max} , R_{min} vs p is plotted in Fig. 1. By using the measured values of $(R_{\text{min}}, R_{\text{max}})$ [(2 nm, 4 nm) at $T = 120$ K and $(3 \text{ nm}, 7.5 \text{ nm})$ at $T = 130 \text{ K}$ [3]], we search for the values of *p* with the best agreement between measured and calculated values $\nu_s/\nu_t = 10^9$, $\Delta E_s = 0.32$ eV for the theory of [5] and $\nu_s/\nu_t = 10^3$, $\Delta E_s = 0.13$ eV for the theory of [7].

A third approximate method in Ref. [2] is based only on $R_{\text{min}} = 3$ nm at $T = 130$ K by estimating the number of successful hops *f* over the step edge barrier, within the time between atom depositions $\tau = 1/FA$. The number of step interrogations as pointed out in [1] is $2\tau D_t/R_{\text{min}}$ which implies $f = 2\tau p D_t / R_{\text{min}}$. In Ref. [2] (and in [1]), $f > 1$ was taken as the condition for a deposited atom to descend the $R = 3$ nm island. However, the experiment was carried out on an ensemble of islands, not a single island.

FIG. 1. Dependence of *R*max,*R*min on *p*.

Since for time $f\tau$ no islands in the ensemble have second layer nucleation, this time should be larger than the inverse of the minimum nucleation rate Ω_{\min}^{-1} . This gives a much stronger condition on $f > \Omega_{\min}^{-1}(1/\tau)$ than $f > 1$. From this condition, we derive $\nu_s/\nu_t > 7$ (using $\Omega_{\text{min}} = 2.8 \times$ 10^{-4} s⁻¹, $\Delta E_s = 0.13$ eV). This lower bound is less than $\nu_s/\nu_t = 100$ because only the data at $T = 130$ K are used. If one uses the data at 130 K, 120 K, $\nu_s/\nu_t = 100$ results (with the other experiments).

For the other experiments (RHEED, denuded zone), which are the major part of [2], Ref. [1] discusses only whether $\Delta E_s = 0.13$ eV is justified. This is the value consistent with all the experiments [2,3,8,9]. Additional constraint $\Delta E_s > 0.1$ eV (and $\nu_s/\nu_t > 10$) can be deduced from the absence of diffraction oscillations at $T = 500$ K in Ag/Ag(111) and assuming the maximum value $n = 1$ in $R_{\text{min}} \sim p^n$ (and therefore the lowest value of ΔE_s).

K. R. Roos

Bradley University, Peoria, Illinois

M. C. Tringides

Department of Physics, Iowa State University Ames, Iowa 50011

Received 15 February 2001; published 18 September 2001 DOI: 10.1103/PhysRevLett.87.149602

- PACS numbers: 68.35.Fx, 05.40.–a, 68.55.–a, 81.15.–z
- [1] J. Krug, preceding Comment, Phys. Rev. Lett. **87**, 149601 (2001).
- [2] K. R. Roos and M. C. Tringides, Phys. Rev. Lett. **85**, 1480 (2000).
- [3] K. Bromann *et al.,* Phys. Rev. Lett. **75**, 677 (1995).
- [4] K. R. Roos and M. C. Tringides, Surf. Sci. Rev. Lett. **5**, 833 (1998).
- [5] J. Krug *et al.,* Phys. Rev. B **61**, 14 037 (2000).
- [6] J. Rottler and P. Maass, Phys. Rev. Lett. **83**, 3490 (1999).
- [7] J. Tersoff *et al.,* Phys. Rev. Lett. **72**, 266 (1994).
- [8] J. A. Meyer *et al.,* Phys. Rev. B **51**, 14 790 (1995).
- [9] K. Morgenstern *et al.,* Phys. Rev. Lett. **80**, 556 (1998).