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Universal Negative Poisson Ratio of Self-Avoiding Fixed-Connectivity Membranes

M. Bowick,1 A. Cacciuto,1 G. Thorleifsson,2 and A. Travesset3
1Physics Department, Syracuse University, Syracuse, New York 13244-1130

2DeCODE Genetics, Lynghalsi 1, 1S-110, Reykjavik, Iceland
3Loomis Laboratory, University of Illinois at Urbana, Urbana, Illinois 61801

(Received 7 March 2001; published 14 September 2001)

We determine the Poisson ratio of self-avoiding fixed-connectivity membranes, modeled as impene-
trable plaquettes, to be s � 20.37�6�, in statistical agreement with the Poisson ratio of phantom fixed-
connectivity membranes s � 20.32�4�. Together with the equality of critical exponents, this result
implies a unique universality class for fixed-connectivity membranes. Our findings thus establish that
physical fixed-connectivity membranes provide a wide class of auxetic (negative Poisson ratio) materials
with significant potential applications in materials science.
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Fixed-connectivity (also known as polymerized, teth-
ered, or crystalline) membranes are fluctuating and flexible
fishnetlike two-dimensional surfaces with nodes of a fixed
coordination number (for two recent reviews, see [1,2]).
Physical examples include such naturally occurring struc-
tures as polymerized Langmuir-Blodget films [3,4] and the
spectrin/actin cytoskeleton [5] of erythrocytes (mamma-
lian red blood cells). A wide variety of additional examples
is discussed in [1]. Current advances in soft condensed
matter experimental techniques suggest the likelihood of
many new realizations of fixed-connectivity membranes
such as cross-linked DNA networks as well as composite
structures that include fixed-connectivity membranes as
fundamental ingredients. One universal and remarkable
feature of the low-temperature (so-called flat) phase of non-
self-avoiding (phantom) fixed-connectivity membranes is
that they expand transversely when stretched longitudi-
nally [6–9]. In other words, they exhibit a negative Poisson
ratio [10]. Such materials have been dubbed auxetic [11].

In this Letter we estimate, via Monte Carlo simula-
tions, the Poisson ratio of physical self-avoiding fixed-
connectivity membranes. We establish that they are also
auxetic materials with a Poisson ratio and roughness ex-
ponent in statistical agreement with those of flat phantom
membranes. Thus there appears to be a unique universality
class of flat fixed-connectivity membranes, whether they
arise from high bending rigidity or self-avoidance. Direct
experimental measurements should be able to measure this
negative Poisson ratio and test universality. The remark-
able properties of auxetic membranes suggest a rich new
avenue of exploration in materials synthesis.

A fixed-connectivity membrane may be modeled as an
elastic surface with bending rigidity and self-avoidance
[12–15]. The free energy is composed of an elastic and a
self-avoiding contribution:

Ffcm � Fel 1 Fsa . (1)

The elastic free energy Fel is given by
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where u denotes phonon modes, h denotes height modes,
k is the bending rigidity, and l and m are the classical
Lamé coefficients. The self-avoiding free energy we take
to be of the Edwards form

Fsa �
b
2

Z
d2x

Z
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where b determines the strength of self-avoidance. The
strain tensor uab [10] is related to the embedding �r�x�,
defining the membrane by

�r�x� � x 1 u�x� 1 ẑh�x� ,

uab �
1
2

�≠aub 1 ≠bua 1 ≠ah≠bh� .
(4)

Combined efforts both on the analytical and the numeri-
cal side have led to a complete clarification of the phase
diagram of the phantom case (b � 0) and detailed esti-
mates for the critical exponents, as shown in Fig. 1 and
Table I. The phase diagram consists of a crumpled phase
[associated with the Gaussian fixed point (GF)] and a
flat phase [associated with a flat phase fixed point (FL)],
with an intermediate infrared-unstable crumpling transition
(CT), as depicted in Fig. 1.

The self-avoiding model of Eq. (1) with no bending
rigidity (k � 0) has proven to be tractable numerically
[16]. The model possesses a unique infrared fixed point
(SA) describing a flat phase, with detailed results for criti-
cal exponents given in Table I. From the analytical stand-
point there is evidence for a unique SA [17,18], but the
calculations are inconclusive on whether it describes a flat
or a crumpled phase [19–24].

A look at Table I reveals that the critical exponents and
the Poisson ratio of both phantom and self-avoiding mem-
branes coincide within the error bars quoted, implying that
the FL and the SA are equivalent. This is a very surprising
result since it means that the same long wavelength limit
© 2001 The American Physical Society 148103-1
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FIG. 1. The renormalization group flows in the two-dimensional
space of couplings for a fixed-connectivity membrane with bend-
ing rigidity (k) and self-avoidance (b). The phantom model
(b � 0) has two infrared-stable fixed points, the crumpled phase
(GF) and the flat phase (FL), with an intermediate continuous
crumpling transition associated with the infrared-unstable fixed
point (CT). The pure self-avoiding model with no microscopic
bending rigidity (k � 0) has an infrared stable self-avoiding
fixed point (SA). There is a line of equivalent fixed points join-
ing the FL and the SA (the solid line), thus defining a redundant
direction in k-b space.

is reached via two very different routes: either sufficiently
large bending rigidity or strong self-avoidance in the ab-
sence of bending rigidity. This is even more remarkable
considering the very different short-distance structure of
the two models: a membrane with large bending rigidity is
very smooth at short distances while a purely self-avoiding
membrane in the absence of bending rigidity is extremely
rough.

In light of our results, we suggest the renormalization
group (RG) flows depicted in Fig. 1. Given these flows
and the equivalence of the SA and the FL, there must be a

TABLE I. Critical exponents and Poisson ratio of flat fixed-
connectivity membranes in the phantom (MC: Monte Carlo;
SCSA: self-consistent screening approximation) and the self-
avoiding case (MC-BS: Monte Carlo with Balls and Springs
models; MC-IP: Monte Carlo with impenetrable models).

Phantom
MC ´ expansion SCSA Large d

n 0.95(5) [25] 1 1 1
z 0.64(2) [25] 13�25 [6] 0.59 [7] 2�3 [26]
s 20.32�4� [9] 21�5 [6] 20.33 [6]

Self-avoiding
MC-BS MC-IP Experiments

n 1 [27] 0.97(4) [16] 0.93(5) [28]
z 0.65 [27] 0.64(2) [16] 0.65(10) [5]
s 20.37�6�
148103-2
full line of equivalent fixed points b�k� joining them, with
no RG flow on the line (corresponding to a marginal direc-
tion). Since these are the infrared-stable fixed points of the
system, all the relevant physics are described by this line.
The crumpling transition present for phantom membranes
may be reached only by an extremely precise tuning of the
parameters involved in the problem. This would make the
crumpling transition in the model described as very diffi-
cult to verify experimentally.

We see that the combination of fixed connectivity (integ-
rity of the lattice) and self-avoidance sufficiently restricts
the entropy of crumpled configurations as to destroy the
crumpled phase. It was already observed in [29] that next-
to-nearest neighbor self-avoidance, discretized by hard-
sphere potentials, induces a positive bending rigidity. On
the other hand, the impenetrable plaquette model treated
here is very flexible, since only strictly self-intersecting con-
figurations are forbidden, and hence the physical mecha-
nism flattening the membrane is clearly more general than
the simple induced bending rigidity discussed above.

We performed a Monte Carlo simulation of a suitable
discrete version of the model [Eq. (1)], as described in
[16]. The Poisson ratio s for a two-dimensional system
deformed from its mean length l by dl is determined by

s � 2
dw�w

dl�l
, (5)

where dw�w measures the fractional change in the trans-
verse extent (width) of the system. In [9] it is shown that
linear response theory gives

s � 2
�uxxuyy�c

�uyy
2�c

, (6)

where �u2�c is the connected statistical average over Monte
Carlo configurations and u is the spatial average over the
surface.

Our results are presented in Fig. 2(A) and show that
the Poisson ratio s � 21�3 obtained in simulations of
flat phantom fixed-connectivity membranes is also a good
estimate of the Poisson ratio for the pure self-avoiding
model. Error bars have been calculated with the Jacknife
method [30,31].

To calibrate the influence of the boundary on our results
we calculated the Poisson ratio excluding concentric outer
shells of nodes neighboring the boundary. In particular,
we performed the numerical analysis discarding shells of
boundary nodes of increasing extent. The results are pre-
sented in Fig. 2(B).

The exclusion of larger shells of boundary sites slightly
increases the absolute value of the Poisson ratio. For suffi-
ciently small reduced linear size, jsj begins to decrease
due to finite size effects. There is consequently competi-
tion between boundary and finite size effects. Finite size
effects become important only when a sizable fraction of
nodes near the boundary is excluded. Note that we can also
148103-2
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FIG. 2. Poisson ratio of a self-avoiding fixed-connectivity
membrane as a function of system size (A). Poisson ratio of
reduced lattices compared with nontruncated ones (B). The
straight dashed line indicates in both cases the SCSA analytical
result s � 21�3.

make a consistent check of our analysis by systematically
excluding shells of nodes from the boundary in towards the
center of the lattice and comparing the lattices of reduced
size thus obtained with equal volume nontruncated lattices.

Thus we can compare, for example, the L � 65 result
with that from the reduced L � 95 lattice and likewise the
L � 49 result with that from the reduced L � 95 and L �
65 lattices. The matching given by this comparison is
consistent. In fact we are able to reproduce the L � 65,
L � 49, and L � 33 results simply by reducing the L �
95 lattice. The deviations found in this comparison are
another measure of boundary effects.

Traditional materials get thinner when stretched and fat-
ter when squashed, since it is typically difficult to increase
their volume very much when deformed. (A volume pre-
serving deformation has a Poisson ratio of 0.5. Any value
less than 0.5 involves some increase in volume under de-
formation. A negative Poisson ratio implies a very large
volume increase.) In the unusual world of auxetics the op-
posite happens, with a number of interesting implications
and potential applications. There are several well-known
auxetic materials. The earliest example, dating from more
than a century ago, is that of a pyrite crystal [32], which
has a Poisson ratio in certain directions of s � 20.14.
More recently some polyester foams under certain pres-
sure conditions have proved to be isotropic auxetic materi-
als with Poisson ratios as large as s � 20.7 [33]. A nice
mechanical model for auxetic materials was given in [11]
(see Fig. 3). One of the rare naturally occurring auxetics
is SiO2 in its a-crystobalite phase [34,35].
148103-3
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FIG. 3. Mechanical model of an auxetic material: (a) in the
absence of applied stress and (b) under applied lateral stress T .
The lateral stretching accompanying the applied stress forces the
material out in the transverse dimension.

The underlying mechanism driving fixed-connectivity
membranes auxetic has some similarities to that illustrated
in Fig. 3. Submitting a membrane to tension will sup-
press its out-of-plane fluctuations, forcing it entropically
to expand in both in-plane directions. More physically, the
out-of-plane undulations renormalize the elastic constants
(the Lamé coefficients), in such a way that the long wave-
length bulk modulus is less than the shear modulus, which
is the signature of a two-dimensional auxetic material.

Auxetic materials have desirable mechanical properties
such as higher in-plane indentation resistance, transverse
shear modulus, and bending stiffness. They have clear ap-
plications as sealants, gaskets, and fasteners. They may also
be promising materials for artificial arteries, since they can
expand to accommodate sudden increases in blood flow.

We can model a realistic fixed-connectivity membrane
with an elastic free energy and either large bending rigidity
or self-avoidance. This is of practical importance in mod-
eling since, for example, we may replace the more com-
plicated nonlocal self-avoidance term with a large bending
rigidity. It remains an important theoretical challenge to
verify this conclusion analytically.

In this Letter we have ignored the role of topological
defects. We think that a sufficiently large defect density
may affect the actual value of the Poisson ratio, but a
detailed discussion of this topic is beyond the scope of
this paper.

It is our hope that the results presented in this Letter
will encourage materials scientists and condensed matter
experimentalists to further study the elastic and mechani-
cal properties of fixed-connectivity membranes and, in par-
ticular, to measure the Poisson ratio of these novel systems.
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