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We report resonant tunneling experiments in a quantum antidot sample in the integer quantum Hall
regime. In particular, we have measured the temperature T dependence of the peak value of a conduc-
tance peak on the i � 2 plateau, where there are two peaks per magnetic flux quantum f0. We observe
a T21 dependence as expected when tunneling through only one electron state is possible. This result is
incompatible with tunneling through a compressible ring of several degenerate states. We also observe,
for the first time, three conductance peaks per f0 on the i � 3 plateau.
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Resonant tunneling in quantum antidots (QAD) in quan-
tum Hall (QH) regime provides a fascinating tool to study
fundamental many body quantum mechanics. For ex-
ample, a QAD electrometer has been used in the first di-
rect observation of a fractionally quantized electric charge
[1,2]. QAD is formed when a small potential hill is in-
troduced into a two-dimensional electron system (2DES)
subjected to magnetic field B (Fig. 1). First, neglecting
electron-electron interaction and the antidot bare potential
U�r�, in the symmetric gauge, single particle orbitals can
be chosen to be eigenstates of the angular momentum with
eigenvalues h̄m, m � 0, 1, 2, . . . . For an electron in the
lowest Landau level these orbitals are

cm�r, u� � �2p2mm!�21�2rm exp�imu 2 r2�4� , (1)

where r is in units of magnetic length � �
p

h̄�eB. All
eigenenergies Em in each spin-polarized Landau level are
equal; that is, the states cm are all degenerate. The peak
value of jcmj

2 occurs at rm �
p

2m �, and the area within
rm is Sm � 2pm�2; in other words, the WKB area of
the orbital cm encloses mf0 of magnetic flux. Analogous
QAD-bound basis wave functions can be written for each
Landau level [3]. Insofar as U�r� is weak, it can be treated
perturbatively; the main effect is that the massive degen-
eracy of Em is lifted.

In 2DES realized in GaAs/AlGaAs heterostructures,
however, interelectron Coulomb interaction �e2�4pee0�
is comparable to the cyclotron and Zeeman energies,
and strongly mixes occupation of the basis orbitals, even
between different Landau levels. Thus an appropriate
theoretical description of a QAD has to be based on many
electron wave functions, a goal not yet achieved. Because
of lack of a rigorous theory two models have been ad-
vanced to describe tunneling experiments in samples with
a QAD. One model postulates the existence of perfectly
compressible rings of degenerate electron states circling
the QAD, one ring per spin-split Landau level [4,5]. The
observed discrete tunneling spectrum then requires lifting
of degeneracy by Coulomb blockade, similar to lifting of
degeneracy of electron states in metal particles [6].
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We have used a different model [1,2,7]. Consider a
2DES region which includes the QAD, its boundary pass-
ing where chemical potential m lies well within the QH
gap, that is, where 2DES is “incompressible”; this region
excludes any gapless edge channels connected to Ohmic
contacts. Start with noninteracting electrons, Eq. (1), and
gradually turn on interaction. Barring a phase transition
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FIG. 1. (a) A quantum antidot sample. Numbered rectangles
are Ohmic contacts; the antidot is in the constriction between
two front gates. The arrowed lines show an edge channel. The
back gate extends over the entire sample on the opposite side
of the insulating GaAs substrate. (b) Self-consistent energy dia-
gram of one Landau level in the constriction; the QHE gap forms
the tunneling barriers. The energy spectrum is continuous at the
edges and discrete near the antidot. (c) Two possibilities for
the QAD-bound states near the chemical potential m. The left
version assumes a compressible ring of degenerate states; then
the Coulomb blockade is required to lift the degeneracy. The
right version illustrates that in a finite system perfect screening
is not possible; then there is no truly compressible region at m.
At low T tunneling occurs between the left and the right edges
via only one state.
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[e.g., to a fractional quantum Hall (FQH) state] the states
´m of the interacting 2DES are adiabatically connected to
the states Em of the noninteracting system. The eigenstates
of the angular momentum are still eigenstates of the Ham-
iltonian, and we can use m to label them on each integer
quantum Hall (IQH) plateau. Because perfect screening is
impossible in a finite quantum system, the energy spectrum
´m of the QAD region, including all interactions, is non-
degenerate [8]. The ´m depend on parameters, such as B
and gate voltages, and on electron occupation. When B is
varied, ´m cross m one by one. Small-bias single electron
tunneling conductance peak occurs when ´m � m for the
same m in the system without tunneling electron as well as
in the system including the tunneling electron. We distin-
guish a continuous variable, filling factor n � nh�eB, and
quantum number i � hsxy�e2, where sxy is quantized.
Because there are i electron states per f0 on the ith IQH
plateau, the Aharonov-Bohm period DB � f0�S contains
i peaks, where S is the QAD area. When B is fixed, ´m

are affected by the electric field of the back gate at voltage
VBG; two consecutive conductance peaks are separated by
DVBG corresponding to the electric field required to attract
one electron to area S [1,2].

In this paper we report resonant tunneling experiments
in a QAD sample in the IQH regime. In particular, we have
measured temperature T dependence of both the width
W and the peak value Gp of a conductance peak on the
i � 2 plateau. Gp�T� is expected to be T independent
when tunneling occurs through several degenerate states (a
compressible ring), while the dependence is Gp ~ 1�T for
tunneling involving only one nondegenerate state. In the
experiment we observe the 1�T dependence as T is varied
by a factor of 10, which rules out lifting of the degeneracy
by the Coulomb blockade.

We use low disorder GaAs heterojunction mate-
rial, where 2DES (n � 1 3 1011 cm22, mobility 2 3

106 cm2�V s) is prepared by exposure to red light at
4.2 K. The antidot-in-a-constriction geometry, somewhat
different from that of [1,7], is defined by electron beam
lithography on a preetched mesa with Ohmic contacts.
After 150 nm of chemical etching, Au/Ti front gate
metallization is deposited in the etched trenches. Samples
are mounted on sapphire substrates with In metal which
serves as the global back gate separated from 2DES by an
insulating GaAs substrate 0.43 mm thick. The front gates
are biased separately; the two voltages were adjusted to set
the electron density (and therefore n) in the constriction.
Experiments were performed in a dilution refrigerator; ex-
tensive cold filtering cuts the electromagnetic background
incident on the sample to 5 3 10217 W, allowing us to
achieve a low effective electron Teff � 18 mK [9].

Figure 2 shows the four-terminal magnetoresistance
Rxx in the IQH regime. We use nC as the filling factor
in the constriction region between the front gates, and
nB for “the bulk,” away from the constriction region.
The front gates are biased negatively to bring the edges
closer to the antidot to increase the tunneling amplitude
146801-2
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FIG. 2. Four-terminal Rxx vs B in the integer QH regime;
horizontal arrows (labeled iC on iB) show quantized values of
RL. The negative bias on the front gates depletes the antidot-
constriction region so that nC is smaller than nB in the bulk.
The inset illustrates the case nC � 1 on nB � 2.

to a measurable level; this results in nC being smaller
than nB. A quantum Hall effect (QHE) sample with
two nB regions separated by a lower nC region has
Rxx � RL � Rxy�nC� 2 Rxy �nB�, if no tunneling oc-
curs. The equality is exact, RL � �h�e2� �1�iC 2 1�iB�,
if both filling factors are on a plateau, nC � iC and
nB � iB, which can be achieved by adjusting the front
gate voltages. Then the Hall resistances Rxy of all regions
acquire quantized values. Several RL plateaus (neglecting
tunneling peaks) are seen in Fig. 2.

Resonant tunneling through QAD results in characteris-
tic Rxx peaks quasiperiodic in B. In some data we observe
both Rxx peaks for nC , iC, “back scattering,” and dips
for nC . iC, “forward scattering” [4,10]; see the iC � 2
plateau in Fig. 2. The tunneling peaks are superimposed on
a smooth RL background, and we obtain tunneling conduc-
tance GT as described previously [1,9]. In essence, when
RL is quantized, edge network model gives GT � �Rxx 2

RL���R2
H 2 RH�Rxx 2 RL��, where constriction Hall re-

sistance RH � h�iCe2. Both back (Rxx peaks) and for-
ward (Rxx dips) scattering results in GT peaks. Thus
determined GT vs B data for Rxx peaks on iC � 1, 2, and
3 plateaus are shown in Fig. 3. As expected, there are iC
peaks per DB � 11.5 mT, corresponding to the addition
of one f0 to the QAD area Sm at the chemical potential
m; thus Sm is approximately the same for all the plateaus.
Note that f0�2 and f0�3 periodicities follow naturally
from our i peaks per DB model, and do not require in-
vocation of Coulomb blockade. From DB we immediately
obtain the antidot radius rm �

p
f0�pDB � 340 nm; the

quantum number mm � B�DB � 75, 80, and 190 for the
iC � 3, 2, and 1 plateaus, respectively.
146801-2
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FIG. 3. Representative GT vs B data for iC � 1, 2, and
3 plateaus. B is scaled as 1:2:3, and the vertical grid lines are
spaced by 20 mT in all three panels.

The small-bias tunneling conductance has been calcu-
lated for an on-site interaction model appropriate to our
experiments [11,12]. For the classical Coulomb block-
ade regime G, D´ ø kBT , when tunneling occurs through
many degenerate states [6,13],

GT � Gp
�m 2 ´0��kBT

sinh��m 2 ´0��kBT�
, Gp �

e2

h
rGLGR

2G
, (2)

where GL and GR are the tunneling rates to the right and
the left leads, G � �GL 1 GR��2, ´0 is the energy of the
resonant state, and r is the density of states at the chemi-
cal potential m. For G, kBT ø D´, when only one non-
degenerate electron state is involved in resonant tunneling,
conductance is given by [9,14]

GT �
e2

h
GLGR

4kBT

Z
d´

1
�´ 2 ´0�2 1 G2 cosh22

µ
m 2 ´

2kBT

∂
,

(3)

If kBT ¿ G, thermal broadening dominates, and Eq. (3)
becomes

GT � Gp cosh22

µ
m 2 ´0

2kBT

∂
, Gp �

e2

h
pGLGR

4kBTG
. (4)

When lifetime broadening dominates, G ¿ kBT , the con-
ductance peak takes a Lorentzian form:

GT � �e2�h�GLGR��m 2 ´0�2 1 G2�21. (5)

The Rxx dips on the low-B side of the iC � 2 plateau
in Fig. 2 have DB � 18 mT; here rm � 270 nm. Fig-
ure 4(a) shows the corresponding conductance GT as a
function of VBG. The peaks are well separated at low
bath T � 11.8 mK; we therefore studied the line shape
and the T dependence of these GT vs VBG peaks in detail.
A high-resolution sweep of the peak at VBG � 21.3 V
is plotted in Fig. 4(b) with two line shape fits. We com-
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pare experimental GT to Eqs. (2)–(5) to see whether it
is possible to ascertain that the experiment is in one of
the various regimes. In experiment GT is measured as
a function of B or a gate voltage (in our case VBG), at
several T ; as before [8,9], we can relate experimental pa-
rameters to the energy tuning via linear terms of expan-
sions: m 2 ´0 � b�B0 2 B� � a�VBG 2 VBG0�. Since
a, b, GL, and GR are not known independently in practice,
the only rigorous analysis possible is to compare normal-
ized line shapes GT �Gp vs VBG or B, and experimental
T dependencies Gp�T� and W�T� to Eqs. (2)–(5). Here
W is the appropriate “width” parameter of the normalized
line shapes GT �Gp vs VBG. The solid line is the best
fit to thermally broadened line shape Eq. (4), which be-
comes GT � Gp cosh22��VBG0 2 VBG��W� using experi-
mental observables. The fitting parameters are the peak
amplitude Gp, the width W , and the peak position VBG0.
The dashed line is the best fit to Eq. (5); it does not give
a good fit even at the lowest T , ruling out the intrinsic
linewidth regime G ¿ kBT . The thermally broadened line
shape Eq. (4) fits our data very well at all experimental
T . It so happens that the functional dependence x� sinh x
in Eq. (2) is very close to 1� cosh2�

p
6 x� in Eq. (4) for

x , 8. The absolute energy scale is different by a factor
of

p
3�2; however, it can be determined only from the T

dependence of W [8], which requires the use of one of the
models. Thus, even though the line shapes of Eqs. (2) and
(4) are not identical, both fit the data equally well.
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FIG. 4. (a) GT vs VBG for Rxx dips on the low-B side of the
iC � 2 plateau at B � 0.804 T. (b) High-resolution sweep data
(circles) of one of the peaks. Solid line is the best fit to Eq. (4).
Dotted line is the best fit to a Lorentzian Eq. (5).
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In Fig. 5 we plot Gp and the width W as a function
of T , obtained from fits of the experimental GT vs VBG

peak of Fig. 4(b). The solid lines are two-parameter phe-

nomenological fits: W � �2kB�a�
q

T2 1 T 2
0 and Gp �

Gp0�
q

T2 1 T2
0 , where a, Gp0, and T0 were varied for

the best fit [15]. The width W increases monotonically
with T , and the dependence is linear at high temperatures.
The peak value Gp decreases monotonically with increas-
ing T , and Gp ~ 1�T dependence is clear for 35 , T ,

320 mK, consistent with Eq. (4), derived for resonant tun-
neling through one nondegenerate state. The dashed line
gives Gp�T� � Gp0, which is the prediction of Eq. (2) de-
rived for tunneling through many degenerate states, when
only Coulomb blockade lifts degeneracy. The constancy
of Gp�T� for tunneling through several degenerate states,
D´ ø kBT , when only Coulomb blockade produces con-
ductance peaks, is quite fundamental: it results from the
~ 1�T dependence of tunneling through each state being
canceled by the ~ T increase in the number of states par-
ticipating in tunneling. In fact, in this regime Gp�T� even
increases at higher T [12]. Thus, the data of Fig. 5 rules
out that tunneling occurs via a degenerate “compressible
ring” of QAD-bound electron states in our samples.

From Eq. (4) aW � 2kBT ; the fit gives a �
56.5 meV�V. We can obtain “addition energy” level
spacing aDVBG � 150 meV from the activation energy
at a minimum between two consecutive tunneling peaks
[16]. This is a sizable fraction of the cyclotron energy
(1.4 meV), and is greater than the bare Zeeman energy
(17 meV). Both a and D´ in the present sample are
greater by a factor of 5 than in the sample of Refs. [1,8],
even though the lithographic size of the antidot is
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FIG. 5. Peak tunneling conductance Gp vs temperature T . For
35 , T , 320 mK, Gp ~ 1�T (solid line), as expected for
resonant tunneling through only one nondegenerate state. The
dashed line gives the expectation for tunneling through a ring
of degenerate states, with Coulomb blockade lifting degener-
acy. Inset shows the dependence of the width parameter W ; for
T . 35 mK, W ~ T (solid line).
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nearly the same, and the QAD area S obtained from the
Aharonov-Bohm period is 30% greater in the present
sample. The largest possible variable is the etching depth,
which is not known very accurately. The etching depth
strongly affects the bare antidot potential U�r�, which is
due to GaAs surface depletion in our samples. This is
additional evidence that the self-consistent electrostatics
of interacting electrons is responsible for the energetics
in a QAD.

In summary, we have measured the T dependence of
both the width and the peak value Gp of a conductance
peak on the i � 2 IQH plateau. The observed Gp ~ 1�T
dependence is consistent with resonant tunneling through
only one nondegenerate QAD-bound state, and rules out
the regime of tunneling through several degenerate states
(a compressible edge channel ring), when Gp is expected
to be T independent. We also observed, for the first time,
three conductance peaks per f0 on the i � 3 plateau.
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