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Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
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We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is
formed by two different magnetic fields B� and B0 inside and outside the dot, respectively. We find that
the electron states located near the dot and the scattering of edge channels by the dot strongly depend on
whether B� is parallel or antiparallel to B0. For parallel fields, two-terminal conductance as a function
of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized
and all channels can be completely reflected in some energy ranges. All these features are attributed to
the characteristic magnetic confinements caused by nonuniform fields.
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Transport properties of two-dimensional electron gas
(2DEG) in spatially nonuniform magnetic fields have at-
tracted much attention. Various magnetic structures such
as magnetic dots [1], superlattices [2], barriers [3], and
transverse steps [4] were realized experimentally in non-
planar 2DEGs or by patterning ferromagnetic or super-
conducting materials. Theoretically, it was shown that
nonuniform magnetic fields can cause electron drifts [5,6],
transmission barriers [7], and commensurability effects
[8]. Magnetic edge states, which exist along the boundary
between two different magnetic domains, were proposed
[9,10] in the analogy with the conventional edge states [11]
in quantum Hall systems, and their effects on magnetore-
sistance were reported experimentally [4].

The electron transport through quantum wires in strong
magnetic fields can be well described by edge channels.
When a local electrostatic modulation is applied addition-
ally inside the wires, conductances can be still quantized
and resonant reflections appear [12,13]. These interesting
features can be modified when such a modulation is re-
placed by a magnetic one such as a magnetic quantum dot
(or magnetic antidot) [9,10], which is formed in 2DEG
by nonuniform perpendicular magnetic fields; �B � B�ẑ
within a circular disk with radius r0, while �B � B0ẑ out-
side it. The classical electron trajectories (see Fig. 1)
scattered by a magnetic dot with g �� B��B0� , 0 are
very different from those for g . 0 and those by an elec-
trostatic dot or antidot, indicating distinct edge-channel
scatterings by local magnetic modulations from those by
electrostatic ones. The study of such a scattering mecha-
nism is important to understanding the electron transport
in magnetic structures and to suggesting future device ap-
plications. However, to our knowledge, little attention has
been paid to it [7].

In this Letter, we study the ballistic transport of conven-
tional edge channels through quantum wires with a mag-
netic quantum dot. The magnetic edge states near the dot
and the two-terminal conductance G�EF � of the wires in
the zero bias limit are found to exhibit distinct features be-
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tween two cases of g . 0 and g , 0, where EF is the
Fermi energy. For g . 0, G�EF� is quantized and the dot
behaves as a transmission barrier and a resonator, when
the magnetic length inside the dot is smaller than r0. This
feature results from the harmonic-potential-like magnetic
confinements and is similar to that of electrostatic modu-
lations. On the other hand, for g , 0, G�EF � is not
quantized when incident channels are scattered by the dot.
Moreover, for g , 21, all incident channels can be com-
pletely reflected by the dot in some ranges of EF , resulting
in the plateaus of G�EF� � 0. These interesting features
for g , 0 are due to the double-well and merged-well
magnetic confinements caused by the field reversal at the
dot boundary. We also propose a calculational method for
conductances, based on the symmetric gauge and Green’s
function.

The dot is located in the middle of an infinitely long
wire, whose potential is an infinite square well of width Ly

in the transverse y direction (see Fig. 1). The distance be-
tween the dot and wire edge is D. The magnetic length and
the Landau energy inside (outside) the dot are determined
by B� �B0� as lB� � j� �

p
�2j 1 1�h̄��ejB�j� [lB0

� j� �p
�2j 1 1�h̄��eB0�] and E�� j� � � j 1 1�2�h̄ejB�j�m�

[E0� j� � � j 1 1�2�h̄eB0�m�], respectively, where j �
0, 1, 2, . . . and m� is the effective mass. We focus on the
edge state transport regime, i.e., Ly ¿ lB0

�N 2 1�, and
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FIG. 1. Schematic diagram of a quantum wire with a magnetic
quantum dot. Solid (dashed) arrows represent the classical elec-
tron trajectories for B��B0 . 0 (B��B0 , 0).
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ignore the effects of spin and disorder, where N is the
number of Landau levels below EF far away from the dot.

We first consider the case for D . lB0�N 2 1�. In this
case, incident conventional edge channels do not interact
with the dot, thus, G�EF� � NG0 (including the spin de-
generacy) except for backward scatterings of channels by
the resonant tunneling into the magnetic edge states of
the dot, where G0 � 2e2�h. To understand these mag-
netic edge states, we examine a magnetic dot in an infinite
2DEG. When the dot center is located at r � 0 in polar co-
ordinates �r, u�, the eigenstates can be written as cnm� �r� �
Rnm�r�eimu for the symmetric gauge, where m is the an-
gular momentum quantum number and n �� 0, 1, 2, . . .� is
the number of nodes in Rnm�r�.

The eigenstates can be classified by their radial loca-
tions. A �n, m , 0� state located far away from the dot
interacts with B0. From the gauge invariance [14], its ra-
dial wave function is found to be the same as that of the
�n, meff� state in uniform fields B0. Here, meff � m 2 s
and s [� �1 2 g�pr2

0 B0�f0] is the number of removed
magnetic flux quanta (or additional ones for s , 0) to form
the magnetic dot in 2DEG where the uniform B0 is al-
ready applied [9]. Then, cnm,0 is located at rp �meff,B0�
with the eigenenergy Enm � E0�n�, enclosing jmj flux
quanta, where rp�m, B� �

p
2jmjh̄��eB�. On the other

hand, cnm’s near the dot interact with both B0 and B�, thus,
Enm’s deviate from E0�n�. They are magnetic edge states
circulating along the dot boundary [9] and cause reso-
nant scatterings of conventional edge channels. When
r0 ¿ lB� �n 2 1� and jmj is small, cnm’s are located at
rp �m, B�� inside the dot with Enm � E��n�. Interestingly,
for g , 0, cnm’s with small m , 0 can be located also at
rp �meff, B0� outside the dot.

The above features are clearly shown in Fig. 2. In di-
mensionless units of E0�0� ! 1 and

p
2 lB0

�0� ! 1,
we calculate Enm’s from the radial part of the
Schrödinger equation, �d2�dr2 1 d��rdr� 1 2���Enm 2

Veff�r�����Rnm�r� � 0. Here, we define the magnetic con-
finement as the effective potential Veff, where Veff�r� �
�m�r 1 gr�2�2 for r , r0, while Veff�r� � �meff�r 1
r�2�2 for r . r0. For g . 0, Veff�r� is similar to the
harmonic potential, which is the magnetic confinement
in uniform fields. Thus, Enm’s vary monotonously from
E0� j� at large jmj [i.e., rp�meff, B0� ¿ r0] to E�� j� at
small jmj [i.e., rp�m, B�� ø r0], where j � n 1 �m 1
jmj��2. Note that for small r0 [,lB�� j�], Enm does not
reach E�� j� at small jmj, as shown in Fig. 2(b). For
g . 1, magnetic edge states circulate counterclockwise
around the dot, while either clockwise or counterclock-
wise for 0 , g , 1.

For g , 0, magnetic confinements are very different
from the harmonic potential. For jmj , jgjs0, Veff is a
double-well potential with a barrier at r0, where s0 �
pr2

0 B0�f0. The barrier is high enough to confine cnm only
in one of the wells, if r0 ¿ lB� . Then, for small m , 0,
the inner well allows energies E�� j1� with j1 � jmj,
146601-2
FIG. 2. (a)–(d) Enm’s and (e) Veff�r, m�’s for s0

�� pr2
0 B0�f0� � 5 and some g’s. In (e), m � 21 (solid),

4 (dashed), 15 (dotted) are chosen. The energy unit is E0�0�.

jmj 1 1, jmj 1 2, . . . , while the outer well allows E0� j2�
with j2 � 0, 1, 2, . . . . Thus, cnm with small m , 0 can be
located either inside or outside the dot, depending on n, as
discussed before. This feature results in abrupt changes of
Enm’s from E0 to E� [see Fig. 2(d)]. Note that in Fig. 2(c)
the abrupt change appears only in the n � 0 level, since
lB� �0� � r0. For jgjs0 # m # s 1 s0, the two wells in
Veff merge into a single well with a minimum at r0 [see
the dotted line in Fig. 2(e)]. The magnetic edge states in
this merged well circulate counterclockwise along r � r0

with snakelike classical motions.
Next, we study the scattering of conventional edge

channels by the magnetic dot when D # lB0
�N 2 1�. We

calculate the transmission probability T �a� [� G�a��G0]
of incident channels as a function of dimensionless
energy a [� EF����2E0�0����] using the lattice Green’s
function [13], where a continuous 2DEG is approximated
by a tight-binding square lattice with lattice constant a.
The vector potential is included as the Peierls’ phase fac-
tor [exp�2ie�h̄

R
l

�A ? d�l �] in hopping matrix elements.
While most previous studies have chosen the Landau
gauge for this approach, the symmetric gauge is essential
in our work, which modifies the approach [15].

The behavior of T�a� can be classified by g (see Fig. 3).
For g . 0, T�a� is quantized when lB� , r0. In this case,
the magnetic confinements are similar to the harmonic po-
tential. Thus, when edge channels pass the constriction
146601-2
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FIG. 3. T �a� for some g’s and r0’s. For all cases, Ly � 35a
and lB0 �0� � 5a.

between the dot and wire edge, they are still well confined
near the wire edge, without the interaction with those in
the opposite edge, resulting in the quantization of T �a�.

For g . 1, T�a� is smaller than that of the uniform-field
case with g � 1, as in the case of electrostatic antidots
[13]. This feature results from the fact that some incident
edge channels are reflected by the dot due to the mag-
netic energy E� larger than E0. As D decreases, the tran-
sition energy Et� j�, where T changes from j to j 1 1,
increases from E0� j� to E�� j� and the number of reso-
nances decreases [see Figs. 3(a) and 3(c)], because the
magnetic edge states are confined in a narrower region.
For 0 , g , 1, T�a� is the same as that for g � 1 ex-
cept for resonant dips. In this case, since E� , E0, the dot
does not reflect any incident edge channels and binds elec-
trons, as in the case of electrostatic dots; thus, the magnetic
dot behaves as a resonator. More resonances occur as g

decreases from 1 and r0 increases.
The features for g , 0 are very different from those

for g . 0 and those by electrostatic modulations. For
21 , g , 0, T�a� is not quantized and smaller than that
of the uniform-field case, although E� , E0, in contrast to
the case of 0 , g , 1. For g , 21, T�a� is not quan-
tized. Moreover, when D � lB0�0�, all incident channels
are completely reflected in some ranges of a, except for
resonances, so that G�a� oscillates between 0 and G0 with
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the plateaus of G � 0, in marked contrast to the magnetic
dot with g . 1.

The features for g , 0 result from the double-well and
merged-well magnetic confinements, which are caused by
the field reversal. To understand this behavior, we imi-
tate the region near the dot by a magnetic step [6] in an
infinite square well U� y� with width Ly , which is divided
into three strips by different magnetic fields; B � B� in the
middle strip �j yj , r0�, while B � B0 in the upper � y .

r0� and lower ones � y , 2r0�. Its eigenstates can be writ-
ten as eikxYk � y�, and Veff� y, k� is defined in a similar way
to the dot case; Veff� y, k� � h̄2�k 1 F� y��l2

B0
�2��2m�� 1

U� y�, where F� y� is y 1 r0�g 2 1�y�j yj for j yj . r0

and gy for jyj , r0. In Fig. 4, Veff� y�’s and the cal-
culated energy levels E�k . 0�’s are shown; note that
E�k , 0� � E�jkj�. The states near y � 6Ly�2 corre-
spond to the current-carrying conventional edge states,
while those near y � 6r0 to the magnetic edge states cir-
culating around the dot. The triple wells [solid and dashed
lines in Figs. 4(a) and 4(b)] correspond to the double-well
magnetic confinements of the magnetic dot, while the
double wells (dotted lines) to the merged-well ones.

For 21 , g , 0, as D �� Ly�2 2 r0� decreases, the
edge states with a given energy near y � 2Ly�2 are de-
termined by Veff with smaller k . 0, which has a smaller
barrier at y � 2r0, due to the wire confinement [see
Fig. 4(a)]. When D � lB0 , the barrier is so small that
the states near y � 2Ly�2 can be easily extended to the
middle or upper strip. The same behavior arises in the
case of the magnetic dot. When D � lB0 , the conventional
edge channels can interact with the double-well magnetic
confinement with a small barrier, so that they are ex-
tended in the transverse direction. Then, the left-going
channels easily interact with the right-going ones, thus,
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FIG. 4. (a),(b) Veff� y, k�’s and (c),(d) E�k�’s for magnetic
steps. The energy unit is 2E0�0� while the length unit is ar-
bitrary. For all cases, lB0�0� � 2.47 and r0 � 9.
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the conductance is not quantized, well corresponding to
the classical trajectories in Fig. 1.

For g , 21 and k . 0, when lB0 ø D , jgjr0, the
states confined in the local minimum at y � Ly�2 of the
triple wells are the conventional edge states [see Fig. 4(b)].
Their energies are much higher than E0 at k � 0 and sat-
isfy dE�dk , 0. As D decreases, the well at y � Ly�2
becomes narrower, so that these states have higher ener-
gies and begin to be mixed with the magnetic edge states
near r � r0, resulting in level splitting. The number of
the pure conventional edge channels near y � Ly�2 is
	M, where M is the largest number satisfying 2lB0�M 2

1� , D. In Fig. 4(c), the energy levels of two pure chan-
nels are shown; note that the levels of channels near y �
2Ly�2 do not appear because of their very high ener-
gies. When D � lB0 �0�, there exist no pure conventional
edge channels. In this case, eigenstates are classified into
those with dE�dk � 0 inside the middle strip, those with
dE�dk . 0 caused by the merged wells at y � r0, and
those with dE�dk , 0 which are the mixed ones of the
magnetic and conventional edge states due to the triple
wells with a small barrier at r0 [see Fig. 4(d)]. Only the
third ones propagate in the same direction as the conven-
tional edge states, and they are not allowed in some en-
ergy ranges above E�’s because of the state mixing. This
feature indicates that all conventional edge channels can
not pass the constriction between the magnetic dot and
wire edge, i.e., G�EF� � 0, in some ranges above E�’s.
The plateaus of G�EF� � 0 appear in wider energy ranges
for larger jgj, smaller EF , and smaller D. The resonant
peaks in the ranges of T �a� � 0 in Fig. 3(b) result from
the snake magnetic edge states in the merged-well mag-
netic confinements.

Magnetic modulations with an order of 	1 T [a 	 2
for electron density of 1011 cm22 and lB0�1� 	 45 nm]
have been realized for both g . 0 and g , 0 in non-
planar 2DEGs [3], while those of 	0.1 T [a 	 20 and
lB0 �19� 	 500 nm] in magnetic steps [4]. When a mag-
netic dot or a finite step is formed by such modulations,
our findings can be observed, because the magnetic con-
finements for g , 0 �g . 0� still form the double wells or
merged wells (harmonic-like potentials). The modulations
in Ref. [3] can be considered as a magnetic dot with very
large r0 and D � 0. We propose that the constrictions be-
tween a magnetic dot and wire edges behave as a magnetic
quantum point contact. The conductance in this new de-
vice with g . 1 is similar to that in electrostatic contacts
[16], while for g , 21, it can be very different, showing
a switching behavior with the plateaus of G�EF � � 0.

In conclusion, we find that a magnetic quantum dot in
a quantum wire behaves as a characteristic transmission
barrier and a resonator. The double-well and merged-well
146601-4
magnetic confinements caused by the field reversal at the
dot boundary result in distinct magnetic edge states and
transport properties, such as the nonquantized conductance
and the plateaus of G � 0. The magnetic confinements
are important to understanding the electronic and transport
properties of other magnetic structures.
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