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We present simple hydrodynamic equations of supercritical fluids close to the gas-liquid critical point.
We numerically solve them to examine plume generation and convection under gravity. These results are
in good agreement with the experiment [A. B. Kogan and H. Meyer, Phys. Rev. E 63, 056310 (2001)].
This Letter is a first study of transient behavior of convection, which is unique in compressible fluids
due to the piston effect.

DOI: 10.1103/PhysRevLett.87.144301 PACS numbers: 44.25.+f, 47.27.Te, 64.70.Fx
As the critical point is approached in supercritical fluids,
the compressibility and thermal expansion grow, and hence
thermal and mechanical disturbances are inseparably cou-
pled. In such fluids the thermal diffusion constant D is
very small, while the pressure propagation is rapid. As a
result, adiabatic processes are of great importance [1]. A
characteristic feature not expected in incompressible fluids
is that the density heterogeneity is much more exaggerated
than that of the temperature due to strong enhancement of
the thermal expansion coefficient ap � 2�≠r�≠T�p �r.

We mention some salient effects of supercritical fluid
hydrodynamics. First, we note that thermal equilibration
processes drastically depend on whether the pressure or the
volume of the fluid is fixed. This is because the thermal dif-
fusion layer near the boundary wall of the fluid container
acts as a piston causing instantaneous adiabatic changes
in the interior region in the fixed volume condition (the
piston effect) [2–6]. This piston is so effectively opera-
tive near the critical point that it decisively influences iso-
choric thermal relaxations. Second, an expanded region
with excess entropy created around a heater can have a
long lifetime due to slow thermal diffusion. In gravity it
will eventually rise upward as a thermal plume as visual-
ized experimentally [5,7] and numerically [8]. Third, as
T ! Tc, there is a crossover in the mechanism of convec-
tion in the Rayleigh-Bénard geometry from the usual one
for incompressible fluids to that of the Schwarzschild cri-
terion [9,10]. In the usual case, convection occurs when
the Rayleigh number Ra � aprcgL3DT�hD exceeds the
critical value Rac��1708� [11]. Here DT is the difference
between the bottom and top temperatures, L is the cell
width, h is the viscosity, and D is the thermal diffusivity.
In the latter criterion, convection is triggered when thermal
plumes continue to rise upward adiabatically. This occurs
when the applied temperature gradient jdT�dzj is larger
than the adiabatic gradient [12],

ag � �≠T�≠p�srg , (1)

which is equal to 0.034 mK�cm for 3He near the critical
point. The effective temperature gradient seen by rising
plumes is given by jdT�dzj 2 ag. Now the convection
onset for compressible fluids is given by Racorr . Rac,
where Racorr is a corrected Rayleigh number defined by [9]
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Racorr � Ra�1 2 agL�DT� . (2)

Thus �DT �onset � agL 1 Rac�Dh�grapL3� at the on-
set. In near-critical fluids, very large Ra can be realized
[13–15], and the crossover between the two criteria was
detected in SF6 from velocity measurements [13] and has
recently been investigated from �DT�onset with precision in
3He [16,17]. The aim here is to present simple hydrody-
namic equations of supercritical fluids and show numerical
results of convection.

Let a supercritical fluid on the critical isochore be in a
cell with the bottom plate at z � 0 and the top plate at z �
L. The total fluid volume is fixed at V . We assume that the
temperature disturbance dT�r, t� � T �r, t� 2 Ttop mea-
sured from the temperature Ttop at the top boundary is
much smaller in magnitude than Ttop 2 Tc. Hereafter
the distance from the critical point is measured by e �
Ttop�Tc 2 1. We also assume that the gravity-induced
density stratification is not too severe such that the ther-
modynamic derivatives are nearly homogeneous in the cell.
This is satisfied when jr�rc 2 1j � �≠r�≠p�T gL ø eb

[18]. Thus we assume

eb1g . agL�Tc , (3)

where b � 0.33 and g � 1.24 are the critical exponents.
In equilibrium the pressure gradient is given by 2rg �
2 rcg. In nonequilibrium we set

p�r, t� � p0 2 rcgz 1 p1�t� 1 pinh�r, t� , (4)

where p0 is a constant, p1�t� and pinh are the homogeneous
and inhomogneous parts induced by dT, respectively.
Here we assume �pinh� � 0, where �· · ·� �

R
dr�· · ·��V

represents the space average. Using the thermodynamic
relation dp � �≠p�≠T�rdT 1 �≠p�≠r�T dr and the
condition that the space average of the density deviation
vanishes, we find [2]

p1�t� � �≠p�≠T�r�dT� �t� . (5)

It is important that the combination p�r, t� 1 rcgz is
nearly homogeneous or jp1�t�j ¿ jpinh�r, t�j for fluid
motions much slower than L�c (c � 104 cm�s being the
sound velocity) [1]. The entropy s�r, t� per unit mass
consists of the equilibrium part seq�z� with dseq�dz �
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2�≠s�≠p�T rg � T21Cpag and the nonequilibrium
deviation, ds�r, t� � T21Cp	dT�r, t� 2 �≠T�≠p�sp1�t�
.
With the aid of the thermodynamic identity �≠T�≠p�s �
�≠T�≠p�r �1 2 1�gs�, the heat conduction equation,
rT �≠�≠t 1 y ? =�s � l=2dT, is rewritten as [1]µ

≠

≠t
1 y ? = 2 D=2

∂
dT � �1 2 g21

s �
d

dt
�dT� 2 agyz ,

(6)

where D � l�rCp with l being the thermal conductivity,
and gs � Cp�CV is the specific heat ratio. Here Cp �
e2g and CV � e2a are the specific heats at constants p
and V , respectively, with a � 0.1. The first term on the
right-hand side of Eq. (6) arises from p1�t�, leading to the
piston effect [2]. The second term arises from dseq�dz
and suppresses the upward motion of plumes.

On long time scales �¿L�c�, sound waves decay to zero
and the incompressibility condition = ? y � 0 becomes
nearly satisfied. The time scale of the velocity field is then
given by L2r�h in terms of the viscosity h. Another char-
acteristic feature is that the Prandtl number Pr � h�rD
increases in the critical region; for example, Pr � 350 at
T�Tc 2 1 � 1023 in 3He. This means that the time scale
of the thermal diffusion is much longer than that of the
velocity. In the low-Reynolds number condition Re , 1
we may use the equation for the momentum rate change in
the Stokes approximation,

h=2y � =p 1 grez � =pinh 2 aprcgdTez , (7)

where ez is the unit vector along the z axis. We note that
an inhomogeneity of dT changing perpendicularly to the
z axis induces an incompressible flow. Let k be the typical
wave number (or 2p�k be the typical length) of the fluid
motion and �dT�c be the typical temperature variation in
the xy plane. Then the magnitude of the velocity field is
of the order �aprcg�hk2� �dT�c and Re � rjyj�hk �
�apr2

cg�h2k4� �dT�c . For convection we set kL � 2p

and �dT�c � DT 2 �DT�onset and rewrite the condition
Re , 1 as

Racorr�Rac 2 1 , Pr . (8)

Thus Eq. (7) is valid in a considerably wide range of
Racorr for Pr ¿ 1. In addition, Eq. (7) yields pinh �
aprcgL�dT�c � e2grcgL�dT�c�Tc. Using Eq. (5) we
have jpinhj ø jp1�t�j in the temperature region where
Eq. (3) is valid, unless �dT� is much smaller than the
characteristic size of dT .

For a steady convection pattern, we set dT�r��DT �
1 2 z�L 1 F �L21r��Ra. The dimensionless function F

vanishes at z � 0 and L and obeys

V ? =̃F � =̃2F 1 RacorrVz , (9)

where =̃ � L= is the space derivative in units of L.
The dimensionless velocity V � �L�D�y obeys =̃2V �
=̃Pinh 2 F ez , where Pinh ensures =̃ ? V � 0. At the
convection onset we thus obtain Racorr � Rac [9,10].
The efficiency of convective heat transport is represented
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by the Nusselt number Nu � QL�lDT , where Q is
the heat flux through the cell. For steady convection
we have

Nu � 1 1 Ra21fl�Racorr� , (10)

where fl � 2L�≠F �≠z�z�0 is a function of Racorr.
Consistently with this result [19], experimental curves of
Ra�Nu 2 1� vs Racorr�Rac 2 1 were collapsed onto a
single universal curve for various densities above Tc [14]
and for various e on the critical isochore [16].

Using the same conditions as in the experiments [16,17],
we perform a numerical analysis of Eqs. (6) and (7) in
two dimensions for 3He at e � 0.05 in a cell with L �
1.06 mm, where gs � 22.8, Tap � 26.9, D � 5.42 3

1025 cm2�s, and Pr � 7.4. The condition (3), e . 2 3

1024, is well satisfied. In this case we have Racorr�Rac �
0.90	DT�agL 2 1
 with agL � 3.57 mK. The convec-
tion occurs for DT . 7.6 mK. We impose the periodic
boundary condition in the lateral direction with period 4L.
We apply a constant heat flux at the bottom for t . 0
with a fixed top temperature; then, the bottom tempera-
ture is a function of time. The boundary temperature
deviations are independent of the lateral coordinates and
DT�t� � Tbot 2 Ttop is a function of time only. In our
simulation the one-dimensional pattern with y � 0 be-
comes linearly unstable against perturbations with period
2L for Q . 16 nW�cm2 and also against those with pe-
riod 4L�3 for Q . 40 nW�cm2. We integrate Eq. (6) on
a 400 3 100 lattice assigning a small random number to
the initial value of dT at each lattice point. In our cell with
width 4L we then have two pairs of rolls, with each pair
having a 2L period, for 16 , Q , 42 nW�cm2 and three
pairs of rolls with 4L�3 period for larger Q in the final
steady state [20]. Note that the roll period is known to be
2.02L slightly above the onset for infinite lateral dimension
[11], while the aspect ratio was 57 in the experiments.

In Fig. 1 we plot time evolution of the temperature
difference DT�t� for various Q. When convection sets
in, an overshoot and a subsequent damped oscillation of
DT follow. As shown in the inset of Fig. 1, the same
transient behavior was observed in the experiment [17].
Figure 2 shows the numerically obtained curve for Q �
45.8 nW�cm2 (solid line), which nearly coincides with the
theoretical curve (dotted curve) without convection for t &

22 s. The latter curve is obtained from Eq. (6) with y � 0.
As shown in Fig. 3 the early-stage temperature profile
is strongly influenced by the piston effect at fixed vol-
ume for t . t1 � L2�D�gs 2 1�2 � 0.42 s [2]. The peak
height and the amplitude of the oscillation in our simu-
lation are somewhat larger than the experimental ones.
This difference could originate from the fact that we real-
ize only roll-like plumes in two dimensions, while plumes
should be more easily ejected from the bottom in three di-
mensions. In Fig. 2 we also show that the overshoot and
damped oscillation become much weaker at fixed pressure,
in which the first term on the right-hand side of Eq. (6) is
144301-2
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FIG. 1. Numerical results of DT �t� vs time after application
of heat flux Q from the bottom, where the top temperature is
fixed. Here T�Tc 2 1 � 0.05, and Q � 5, 15, 25, 45.8, 70,
and 100 nW�cm2 from below. The experimental curves [17] are
shown in the inset, where Q � 0.65, 9.22, 36.6, 45.8, 55.2, and
64.3 nW�cm2 from below.

absent. In the steady state at long times, the numerical re-
sults of DT �`� vs Q agree well with the experimental data,
as shown in Fig. 4 [20].

Figure 5 displays snapshots of the profiles of the
temperature deviations at fixed volume. In 5(A) the
profile is nearly one dimensional, while in 5(B) DT�t�
attains a maximum. In 5(C) the cooler fluid region near
the top begins to flow to the bottom with a velocity y.
An excess cooling then occurs adiabatically, producing
damped oscillation of dT in the whole space region.
In 5(D) DT�t� has dropped to half of the peak value.

FIG. 2. Comparison between the numerical relaxation curve
for three rolls at a 4L�3 period (solid line) and the data �1� [17]
of DT�t� vs time. Here Q � 45.8 nW�cm2 and the volume is
fixed. The upper broken curve represents the theoretical one for
y � 0 obtained from integration of Eq. (6). The dash-dotted
curve represents the numerical curve with three rolls at fixed
pressure. For the points ��� the temperature profiles are given in
Fig. 5.
144301-3
FIG. 3. The early-stage temperature profiles at t � 2 s at fixed
volume and pressure conditions after application of heat flux at
t � 0. The parameters are the same as in Fig. 2.

In 5(E) we show the steady state profile. Using the
estimation of y below Eq. (7), the time tm from 5(B) to
5(D) is estimated as tm � L�y � tD��Racorr�Rac 2 1�,
where tD � L2�4D � 52 s is the diffusion time. This
expression fairly explains the experimental data of tm

[21]. The time tp at the peak is considerably longer
than tm. Both tp and tm grow as Racorr ! Rac. In
addition, at fixed pressure, the roll pattern grows nearly
monotonically into the final steady pattern. Finally we
consider the Reynolds number Re, which we define as
Re � �r�h� �

R
drjy ? =yj2�

R
drj=2yj2�1�2. In Fig. 5

the maximum of Re is 0.2 at 5(C). For Q � 100 nW�cm2,
where Racorr�Rac � 5.5 , Pr � 7.4, the maximum of
Re is increased to 0.6. This is consistent with Eq. (8).
As Q is increased, plumes are generated and detached
from the bottom on smaller space-time scales. Eventually
for Racorr�Rac . 10 the temperature gradient becomes

FIG. 4. The steady state DT vs heat flux Q. Here the points
��� are our numerical results and those �1� are the experimental
data [17].
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FIG. 5. Temperature profiles at (A), (B), (C), and (D), on the
curve in Fig. 2 ���. The bottom one (E) represents the steady
profile. Here dT � 0 at the top boundary and dT . 0 below
it. The dT at the bottom boundary is equal to DT .

localized near the bottom and top boundaries, resulting in
the scaling behavior Nu � �Racorr�Rac�a with a � 1�4 in
agreement with the experiment [17]. Work to extend simu-
lations to larger values of Racorr and Re will appear shortly.

In summary, we properly take into account the piston ef-
fect and the adiabatic temperature gradient effect. Though
performed in two dimensions, numerical solutions of our
dynamic equations fairly agree with the experiment [17].
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