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Asymmetry of the Natural Line Profile for the Hydrogen Atom
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The asymmetry of the natural line profile for transitions in hydrogenlike atoms is evaluated within
a QED framework. For the Lyman-a 1s-2p absorption transition in neutral hydrogen this asymme-
try results in an additional energy shift of 2.929 856 Hz. For the 2s1�2-2p3�2 transition it amounts to
21.512 674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers
refer to the Compton-scattering process.
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The problem of the natural line profile in atomic physics
was considered first in terms of quantum mechanics by
Weisskopf and Wigner [1]. Within the framework of mod-
ern QED it was first formulated for one-electron atoms by
Low [2]. In [2] the occurrence of the Lorentz profile in
the resonance approximation was described and the non-
resonant corrections were estimated. Later the line pro-
file QED theory has been modified also for many-electron
atoms [3] (see also [4]) and has been applied to the theory
of overlapping resonances in two-electron highly charged
ions [5]. Within this formalism corrections to the energy
levels, e.g., reference state QED corrections, have been
evaluated [6].

One of the important consequences of the line profile
theory is the occurrence of nonresonant (NR) corrections
[2]. These corrections indicate the limit up to which the
concept of the energy of an excited atomic state has a physi-
cal meaning—that is the resonance approximation. The
exact theoretical value for the energy of an excited state
defined, e.g., by the Green function pole, can be com-
pared directly with measurable quantities only within the
resonance approximation, for which the line profile is de-
scribed by the two parameters: energy E and width G. Be-
yond this approximation the evaluation of E and G should
be replaced by the evaluation of the line profile for the par-
ticular process. If the distortion of the Lorentz profile is
still small one can formally consider the nonresonant cor-
rection as a correction to the energy shift. Unlike all other
energy corrections, this correction depends on the particu-
lar process under consideration which has been employed
for the measurement of the energy difference. The NR
corrections were considered for H-like ions of phospho-
rus (Z � 15) and uranium (Z � 92) in [7,8]. While for
uranium the NR correction was found to be negligible, its
value was comparable with the experimental inaccuracy in
the case of phosphorus.

In this paper we demonstrate that the concept of a tran-
sition energy depends on the measurement process. For
this reason we evaluate the NR corrections for the neutral
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hydrogen atom. We consider the process of the resonance
Compton scattering as a standard procedure for the deter-
mination of the energy levels. For this process the para-
metric estimate of the NR correction can be expressed as
[2] (in relativistic units).

d � Cma2�aZ�6, (1)

where C is some numerical factor, a is the fine structure
constant, and Z is the nuclear charge number.

The recent QED calculations for low-Z H-like atoms
incorporate corrections of the order ma2�aZ�5 [9–12];
corrections of the order ma2�aZ�6 ln3�aZ� are also in-
cluded [13,14]. For low-Z accurate Lamb-shift calcu-
lations to all orders in Za have been performed recently
[15,16].

Thus in principle the next order corrections to the energy
levels should include NR corrections and will depend on
the process of measurement under consideration. However
the numerical factor C in Eq. (1) appears to be quite small:
1023 for the Lyman-a transition (see below). There are no
direct measurements of the Lyman-a transition frequency
with an accuracy required in order to observe the correction
(1). Modern experimental techniques employed in Lamb-
shift measurements are based on two-photon resonances,
e.g., for the transition 2s-1s [17–19]. Although the theo-
retical evaluation of the NR corrections to the two-photon
resonances is more involved, we can state that the corre-
sponding NR corrections will be of the same order of mag-
nitude as the one considered here.

Consider the process of photon scattering on a one-
electron atom. Resonance scattering implies that the
frequency of the initial photon v is close to the energy
difference v � EA0 2 EB where A0 is some excited
atomic state and B is the initial state. Within the resonance
approximation we retain only the term n � A0 in the sum
over intermediate states in the amplitude. Separating out
the resonant term we express the corresponding amplitude
in the form
© 2001 The American Physical Society 143003-1
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where g are Dirac matrices, Avjml is the vector potential
of the electromagnetic field (photon wave function), and
En are the one-electron energies. Initial, intermediate, and
final states of an electron are denoted as B, n, A0, and A,
respectively. The initial and final photon states are vjml

and v0j0m0l0, where v is the frequency, jm denote the
photon angular momentum and its projection, and the
quantum number l determines the parity of the photon
state. The second and third terms in Eq. (2) represent the
nonresonant corrections to the scattering amplitude.

The Lorentz line profile arises when we sum up all the
electron self-energy insertions in the internal electron line
within the resonance approximation [2]. After summation
of the arising geometric progression one finds

U
�2�
AB�A0� � e2 �gA�

v 0j 0m0l0 �AA0�gAvjml�A0B

EA0 2 EB 1 �ŜR�v 1 EA��A0A0 2 v
, (3)

where ŜR�v 1 EA� is the renormalized electron self-
energy operator.

In the resonance approximation we can substitute v 1
EA � EA0 in the denominator of Eq. (3). The real part of
the matrix element �ŜR�v 1 EA��A0A0 yields the lowest-
order contribution to the Lamb shift while the imaginary
part which is finite and not subject to renormalization in-
dicates the total radiative (single-quantum) width of the
level A0: �ŜR�v 1 EA��A0A0 � LSE
A0 2 iGA0�2. An addi-

tional contribution to the lowest-order Lamb shift LVP
A0

originates from the vacuum polarization graph. However,
this graph gives no contribution to the width [4].

Taking the square modulus of the amplitude (2), inte-
grating over the directions of the absorbed and emitted
photons, and summing over polarizations we obtain the
Lorentz profile for the absorption probability:

dW �v� �
1

2p

GA0Adv

�v0
A0A 1 LSE

A0 2 v�2 1 G
2
A0�4

. (4)

Here dW �v� is the probability for photon absorption in the
frequency interval �v, v 1 dv�, v

0
A0A � EA0 2 EA, and

GA0A is the partial width of the level A0, connected with
the transition A0 ! A. The inclusion of the Lamb shift LA

corresponding to the initial state A into the Lorentz profile
(4) can be accomplished, if necessary, by the methods de-
veloped in [3,4]. The line profile for the emission process
A0 ! A is described again by Eq. (4).

In the nonresonant terms in Eq. (2) we can substitute
v � EA0 2 EB. Then we arrive at the expression (we
omitted the Lamb shift LA0 , which is not essential for our
purposes)
UAB�vjml; v0j0m0l0� � e2

µ �gA�
v 0j 0m0l0�AA0�gAvjml�A0B

EA0 2 EB 2 v 2 iGA0�2
1

X
nfiA0

�gA�
v 0j 0m0l0 �An�gAvjml�nB

En 2 EA0

1
X
n

�gAvjml�An�gA�
v 0j 0m0l0�nB

En 1 EA0 2 EA 2 EB

∂
. (5)

The differential cross section of the process is

dsAB�vjml; v0j0m0l0� � 2pjU
�2�
AB�vjml; v0j0m0l0�j2d�EA 2 EB 1 v0 2 v�dvdv0. (6)

The one-electron states A, A0, B depend on the usual set of quantum numbers A � nAlAjAmA, where nA is the prin-
cipal quantum number, lA is the orbital angular momentum quantum number which determines the parity, and jA, mA

are the total angular momentum and its projection. Integration over v0, summation over j0m0l0, mA, and averaging over
m, mB yield

sAB�vjml� �
2p

�2jB 1 1� �2j 1 1�

X
j 0l0

X
mm0

X
mAmB

jU
�2�
AB�vjml; �v 1 EB 2 EA�j0m0l0�j2dv . (7)
Substituting Eq. (5) into Eq. (7) and omitting the terms,
quadratically dependent on the nonresonant contributions,
we obtain sAB � s�0�

AB 1 s�1�
AB. The first term leads to

the usual Lorentz line profile for the process under
consideration

s
�0�
AB�vjml� �

1
2p

2jA0 1 1
2j 1 1

GAA0WBA0� jl�
�EA0 2 EB 2 v�2 1 G

2
A0�4

,

(8)

where WBA0 is the transition probability B ! A0,
WBA0 �
2p

2jB 1 1

X
mmBmA0

j�gA�
vjml�BA0 j2, (9)

and GAA0 �
P

j 0l0 WAA0�j0l0� is the partial width of the
level A0, connected with the transition A0 ! A. It is as-
sumed that the level B is stable (GB � 0) or metastable
(GB ø GA0). The term s

�1�
AB that represents the interfer-

ence between the resonant and nonresonant contributions
to the amplitude is determined by
143003-2
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where WBB;nA0 �jl� and WnB;AA0� jl� are the “mixed” tran-
sition probabilities

WBB;nA0� jl� �
2p

2jA0 1 1

3
X

mmBmA0mn

�gAvjml�nB�gA�
vjml�BA0 ,

(11)

WnB;AA0 � jl� �
2p

2jA0 1 1

3
X

mmAmBmA0mn

�gAvjml�An�gA�
vjml�BA0 ,

(12)

and GAB;CD �
P

j 0l0 WAB;CD� j 0l0� is the “mixed” partial
width.

It is important to emphasize that in the sum over n in
Eq. (10) only the states n with the same symmetry (i.e.,
with the same jA0lA0) survive. Thus we keep the same
averaging factor �2jA0 1 1�21 in Eqs. (11) and (12). Note
also that for the fixed transition B ! A0 the type of the
absorbed photon ( jl) will be also fixed.

We assume that the standard way of measuring the res-
onance frequency is employed which is connected with
the determination of the maximum in the probability dis-
tribution for the given process. In the pure resonance
case the maximum condition d

dv s
�0�
AB�v� � 0 corresponds

to the resonance frequency value vmax � EA0 2 EB. If
we take into account the correction s

�1�
AB�v�, the result

will be different, i.e., d
dv �s�0�

AB�v� 1 s
�1�
AB�v�� � 0 with

vmax � EA0 2 EB 1 d and

d �
1
4

G
2
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1
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n
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#
.

(13)

Thus the value of vmax for the probability distribution
in the photon scattering process cannot be compared di-
rectly with the energy difference between the two levels.
3

The process-dependent nonresonant correction d should
be taken into account. This result holds also if we include
any QED corrections in EA0 , EB. The order of magnitude
of the correction d follows from the standard estimates for
the allowed transition probabilities (also the mixed ones)
ma�aZ�4 and the transition energies m�aZ�2, i.e., d �
�ma�aZ�4�2��m�aZ�2� � ma2�aZ�6. These orders of
magnitude are the same whether or not the level EA0 is re-
moved from EB by a fine (hyperfine) structure splitting [2].

Consider now the neutral hydrogen atom in the nonrela-
tivistic approximation. We put B � A � 1s, A0 � 2p.
Then the line profile will correspond to the Lyman-a
transition. In this case GA0 � GAA0 � WBA0 and the
matrix elements of the electron-photon interaction are
�gA�

vjml�BA0 � �gAvjml�A0B ! �U1m�1s2p , where

U1m �
4
3

a3�2p1�2v
3�2
0 rY1m (14)

and v0 � E2p 2 E1s. In Eq. (14) and below we use
atomic units. Employing a partial-wave expansion for the
Coulomb Green function the first term of the correction d

can be written as

d1 �
1
2

a6

37

Z `

0

Z `

0
dr1 dr2 r3

1 r3
2 c�

1s�r1�

3 G̃1
EA0

�r1; r2�c1s�r2� , (15)

where G̃1
EA0

denotes the radial part of the nonrelativistic
“modified” Coulomb Green function and c1s is the radial
Schrödinger wave function.

We evaluate Eq. (15) with the Sturmian expansion for the
radial Coulomb Green function G̃1

EA0
that we take from [20]

G̃l
EA0

�r1; r2� �
1
2

X̀
m�l11,mfin

m4

m 2 n
Rml�r1�Rml�r2�

1 4Rnl�r2�
Ω
5�4Rnl�r1� 1 r1

d
dr1

Rnl�r1�
æ

1 4Rnl�r1�
Ω
5�4Rnl�r2� 1 r2

d
dr2

Rnl�r2�
æ

,

(16)

where Rnl are the radial Coulomb wave functions. Inser-
tion of Eq. (16) into Eq. (15) and integration over r1,r2
for EA0 � 2p results in
d1 �
a6

3

µ
2
3

∂16
√ X̀

m�3

�m 1 1�!
�m 2 2� �m 2 2�! 2F2

1 �2 2 m, 5; 4; 2�3� 1 7�2

!
, (17)
where 2F1 denotes a hypergeometric function. The ex-
pansion in Eq. (17) converges very fast and for m � 10 it
gives an error less than 1026. We obtain for the first term
d1 � 2.127 209 3 1023a6 � 2.116 899 8 Hz.
The second term of the correction d can be cast into a
form similar to Eq. (15) but with the “normal” Coulomb
Green function. In this case it is convenient to use for the
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corresponding radial Green function Gl
E�r1; r2� the repre-

sentation [20]

Gl
E �r1; r2� �

Z
n

X̀
m�2

m4

m 2 n
Rml�2r1�n�Rml�2r2�n� ,

(18)

where n � Z�
p

22E � 2�
p

7. Now we obtain

d2 � 4a6 n7

�n 1 1�10

µ
2
3

∂7 X̀
m�2

�m 1 1�m�m 2 1�
m 2 n

3 2F2
1 ���2 2 m, 5; 4; 2��n 1 1���� . (19)

Retaining only six terms of the expansion (18) yields an
accuracy of 1026. For the second term (19) results d2 �
0.821 625 3 1023a6 � 0.817 643 37 Hz and finally

d
�2p�
1s,1s � d1 1 d2 � 2.929 856 Hz. (20)

It should be mentioned that the Lyman-a resonance
consists of two peaks in the scattering experiment, cor-
responding to the two fine structure components. In the
nonrelativistic approximation the distortion of these two
peaks is equal and defined by Eq. (20).

We have also performed an analogous calculation for the
transition 2s1�2 ! 2p3�2 ! 1s1�2. In this case B � 2s1�2,
A � 1s1�2, and A0 � 2p3�2. The result is

d
�2p1�2�
2s,1s � 2

µ
2
3

∂16

a6 � 21.512 674 Hz. (21)

Concluding, we can state that the NR corrections are
comparable with some QED corrections to the Lamb shift
recently included in the consideration [12]. The level of
accuracy of modern experiments with neutral hydrogen for
the two-photon transition 2s-1s is estimated in total to be
46 Hz [19] and is approaching the magnitude of these non-
resonant corrections. The derivation of the two-photon NR
corrections requires the consideration of the two-photon
resonance scattering on a hydrogen atom. The correspond-
ing expression for the amplitude will contain two energy
denominators unlike Eq. (2). However, only one of them
will become resonant while the other one appears as a non-
resonant factor and will not change the order of magnitude
of the total amplitude. Accordingly, the interference term
143003-4
(10) defining the resonance shift will lead to values of the
same order of magnitude as the corrections (20).
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