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We introduce generalized quark and gluon distributions in the deuteron, which can be measured in
exclusive processes like deeply virtual Compton scattering and meson electroproduction. We discuss the
basic properties of these distributions and point out how they probe the interplay of nucleon and parton
degrees of freedom in the deuteron wave function.
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Introduction.—The partonic structure of the deuteron
has been explored in terms of the parton distributions ac-
cessible in deep inelastic scattering [1] and in terms of the
form factors measured in elastic lepton-deuteron processes
[2,3]. It is natural to ask what can be learned from gen-
eralized parton distributions (GPDs), introduced not long
ago in [4,5]. For the nucleon case it has been shown that
these quantities contain unique information about the dy-
namics of quarks and gluons in QCD bound states, beyond
what can be unraveled from ordinary parton distributions
and form factors. Here we extend these studies to the case
0031-9007�01�87(14)�142302(4)$15.00
of the deuteron, with the aim of providing the theoretical
framework to analyze and interpret present and future mea-
surements with deuteron targets. We restrict ourselves to
parton distributions of twist two, and to the parton helicity
conserving sector, which is relevant in most phenomeno-
logical applications. Quark and gluon helicity flip GPDs
can be treated with the same methods.

Generalized quark distributions for the deuteron.—As
in the nucleon case, the GPDs for the deuteron are defined
through nondiagonal matrix elements of quark-antiquark
operators on the light cone. Their general decomposition
can be written as
Vl0l �
Z dk

2p
eixkP?n�p 0, l0jc̄�2kn�g ? nc�kn� jp, l� �

X
i

e0�bV
�i�
baeaHi�x, j , t� , (1)

Al0l �
Z dk

2p
eixkP?n�p0, l0jc̄�2kn�g ? ng5c�kn� jp, l� �

X
i

e0�bA
�i�
baea H̃i�x, j, t� , (2)
where n is a lightlike four-vector, n2 � 0. The incoming
and outgoing deuterons, respectively, have momenta p, p0,
helicities l, l0, and polarization vectors e � e�p, l� and
e0 � e0�p0, l0�. We write P � p 1 p0 and D � p0 2 p,
and choose Ji’s variables x, j � 2�D ? n���P ? n�, t �
D2 as arguments of the GPDs Hi and H̃i. The tensors
V �i� and A�i� depend on the four-vectors p, p0, and n.
One need keep only tensors which do not vanish when
contracted with ea, e
0
b , given the orthogonality conditions

e ? p � e0 ? p0 � 0 of the polarization vectors. With the
constraints from parity invariance we find that the V �i�

ba
are

linear combinations of the five tensor structures

�gba, pbna , nbp0
a, pbp0

a , nbna� . (3)

Similarly, the A�i�
ba

are linear combinations of the seven
tensors
�emnbapmp0n, emnbanmpn, emnbanmp0n , emnrbpmp0nnr na ,emnrbpmp0nnrp0
a,

emnrapmp0n nrnb , emnrapmp0nnrpb� . (4)

Using the Schouten identities [6] one can show that only four out of these seven are linearly independent. The first x
moments of generalized parton distributions are elastic form factors. To keep the corresponding relations simple we take
among the tensors V �i�, A�i� those which appear in the conventional form factor decomposition of the vector and axial
currents [7]:

�p0, l0jc̄�0�gmc�0� jp, l� � 2G1�t� �e0� ? e�Pm 1 G2�t� �em�e0� ? P� 1 e0�m�e ? P�	 2 G3�t� �e ? P� �e0� ? P�
Pm

2M2
,

�p0, l0jc̄�0�gmg5c�0� jp, l� � 2iG̃1�t�em
abge0�a ebPg 1 iG̃2�t�em

abgDaPb eg�e0� ? P� 1 e0�g�e ? P�
M2 ,

(5)

where our convention for the antisymmetric tensor is e0123 � 1 and M is the deuteron mass. The matrix elements are
here defined flavor by flavor; to get the conventional form factors, one must weight with electromagnetic or weak charges
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and sum over flavors. For the matrix elements of the nonlocal operators we define

Vl0l � 2�e0� ? e�H1 1
�e ? n� �e0� ? P� 1 �e0� ? n� �e ? P�

P ? n
H2 2

�e ? P� �e0� ? P�
2M2 H3

1
�e ? n� �e0� ? P� 2 �e0� ? n� �e ? P�

P ? n
H4 1

Ω
4M2 �e ? n� �e0� ? n�

�P ? n�2
1

1
3

�e0� ? e�
æ
H5 ,

Al0l � 2i
emabgnme0�aebPg

P ? n
H̃1 1 i

emabgnmDaPb

P ? n
eg�e0� ? P� 1 e0�g�e ? P�

M2 H̃2

1 i
emabgnmDaPb

P ? n

eg�e0� ? P� 2 e0�g�e ? P�
M2 H̃3 1 i

emabgnmDaPb

P ? n

eg�e0� ? n� 1 e0�g�e ? n�
P ? n

H̃4 .

(6)
Since it is determined by the quark operators in Eqs. (1)
and (2), the Q2 evolution of the GPDs Hi and H̃i is exactly
the same as for spin 1�2 targets, worked out in [4,5,8,9].

Time reversal properties and sum rules.—The action of
the time reversal operator on the matrix element (1) leads
to the relation

e0�beaV
�i�
ba�P, D, n�Hi�x, j, t� � e�be0aV

�i�
ba�P, 2D, n�

3 Hi�x, 2j, t� , (7)

where we have made explicit the dependence of the ten-
sors V �i� on the relevant four-vectors. Taking the complex
conjugate of Eq. (1) we get

e0be�aV
��i�
ba �P, D, n�H�

i �x, j, t� � e�be0aV
�i�
ba�P, 2D, n�

3 Hi�x, 2j, t� . (8)

For the axial vector case, we obtain relations analogous
to (7) and (8) by replacing V �i� with A�i� and Hi with H̃i .
Combining these conditions we find that all nine GPDs
are real. However, their behavior under time reversal is
not uniform and we have

Hi�x, j, t� � Hi�x, 2j, t � �i � 1, 2, 3, 5� ,

H4�x, j, t� � 2H4�x, 2j, t� ,

H̃i�x, j, t� � H̃i�x, 2j, t � �i � 1, 2, 4� ,

H̃3�x, j, t� � 2H̃3�x, 2j, t� .

(9)

Note that in the nonforward case, time reversal invari-
ance fixes the phase of the generalized parton distributions
and determines their behavior under sign change of the
skewedness parameter j but does not limit the number of
GPDs [10]. Integrating Vl0l and Al0l over x one obtains
the local matrix elements (5) contracted with nm��P ? n�.
Since the tensors that accompany the distributions Hi , H̃i

in Eq. (6) are linearly independent, we obtain the sum rules

Z 1

21
dx Hi�x, j, t� � Gi�t� �i � 1, 2, 3� ,

Z 1

21
dx H̃i�x, j, t� � G̃i�t� �i � 1, 2� ,

Z 1

21
dx H4�x, j, t� �

Z 1

21
dx H̃3�x, j, t� � 0 ,

Z 1

21
dx H5�x, j, t� �

Z 1

21
dx H̃4�x, j, t� � 0 .

(10)
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The integrals over H4, H̃3 and H5, H̃4 do not correspond
to form factors of the local vector or axial currents and
therefore vanish. In the case of H4 and H̃3 this is due
to time reversal constraints, whereas the definitions of H5

and H̃4 involve the tensor nmnn��P ? n�2, whose analog
cannot appear in the decomposition of the local currents
due to Lorentz invariance.

The forward limit.—Let us now study the forward limit
of the GPDs, which defines the usual parton distributions.
In the parton model, i.e., at leading twist and leading order
in as there are three independent structure functions in
deep inelastic scattering, F1, b1, g1, whose probabilistic
interpretation in terms of quark densities reads [1]

F1�x� �
1
2

X
q

e2
q

q1�x� 1 q21�x� 1 q0�x�
3

1 �q ! q̄� ,

b1�x� �
1
2

X
q

e2
q

∑
q0�x� 2

q1�x� 1 q21�x�
2

∏
1 �q ! q̄� ,

g1�x� �
1
2

X
q

e2
q�q1

" �x� 2 q21
" �x�	 1 �q ! q̄� .

(11)

Here ql
"�#��x� represents the probability to find a quark with

momentum fraction x and positive (negative) helicity in a
deuteron target of helicity l. The unpolarized quark densi-
ties ql are defined as ql�x� � ql

" �x� 1 ql
# �x�. From par-

ity one has ql
" � q2l

# . The densities for antiquarks are
defined in analogy. Note that the probabilistic interpreta-
tion for F1 and g1 is similar to the one in the spin 1�2 case,
whereas the function b1 does not appear for spin 1�2 tar-
gets. In the forward limit the only structures in Eq. (6) that
survive are those proportional to H1, H5, and H̃1, because
in that limit we have D � 0 and e ? P � e0 ? P � 0.
Using the results for helicity amplitudes given below, one
gets

H1�x, 0, 0� �
q1�x� 1 q21�x� 1 q0�x�

3
,

H5�x, 0, 0� � q0�x� 2
q1�x� 1 q21�x�

2
,

H̃1�x, 0, 0� � q1
" �x� 2 q21

" �x�

(12)

for x . 0. The corresponding relations for x , 0 involve
the antiquark distributions at 2x, with an overall minus
sign in the expressions for H1 and H5. With Eq. (10) we
142302-2



VOLUME 87, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 1 OCTOBER 2001
thus have

0 �
Z 1

21
dx H5�x, 0, 0�

�
Z 1

0
dx

∑
q0�x� 2

q1�x� 1 q21�x�
2

∏
2 �q ! q̄�

(13)

and recover the parton model sum rule
R1

0 b1�x� � 0 of
[11], which was obtained under the assumption that the
quark sea does not contribute to this integral.

Helicity amplitudes.—In the region j , x , 1 our
GPDs can be represented in terms of amplitudes for the
scattering of a quark on a deuteron [10], defined as
142302-3
Al06,l6 �
1
2 �Vl0l 6 Al0l� , (14)

with 6 referring to the helicities of the quarks. With the
constraints

A2l02m,2l2m � �21�l02lAl0m,lm (15)

from parity invariance there are nine independent quark
helicity conserving amplitudes. Since A01,01 � A02,02

we have only four quark helicity dependent distributions
H̃i , compared with the five quark helicity independent Hi .
Time reversal invariance gives

A�x, j, t�lm,l0m � �21�l02lA�x, 2j, t�l0m,lm (16)

and thus does not further reduce the number of GPDs, as
remarked above. To define the polarization of the incoming
deuteron we introduce
e�0�m �
1
M

µ
pm 2

2M2

1 1 j

nm

P ? n

∂
,

e�1�m � 2
1p

�1 2 j2� �t0 2 t�

µ
�1 1 j�p0m 2 �1 2 j�pm 2

j�t0 2 t� 2 t0

j

nm

P ? n

∂
,

e�2�m �
1p

�1 2 j2� �t0 2 t�
2em

nabp0npanb

P ? n
,

(17)

where t0 � 24M2j2��1 2 j2�. The vectors e�0� � e�0� and e�61� � 7�e�1� 6 ie�2���
p

2 then correspond to definite
light-cone helicity [12]. This approximately coincides with usual helicity in frames where the deuteron moves fast, pro-
vided that sgn�p3� � 2sgn�n3�. The polarizations for the outgoing deuteron are obtained from Eq. (17) by the exchange
pm $ p0m, j $ 2j, and an overall sign change for e�1� and e�2�. With this we get

A11,11 �
H1

2
2

H5

6
1

DH3

2
1

H̃1

2
1 2D�H̃2 1 jH̃3� ,

A01,01 �
H1

2
2 jH4 1

1
3

µ
1 2

3
2

j2

∂
H5 2

µ
D 2

j2

1 2 j2

∂ µ
H1 2 H2 2 jH4 2

1
3

H5

∂

2

µ
D2 2

j2

�1 2 j2�2

∂
H3 ,

A21,11 � 2D�1
2 H3 1 2�jH̃2 1 H̃3�	 ,

A01,11 �

s
D�1 2 j�
2�1 1 j�

∑
H1 2

1 2 j

2
�H2 2 H4� 2

1
3

H5 1

µ
D 2

j

1 2 j2

∂
H3

∏

1
p

2D�1 2 j2�
∑

1
4

�H̃1 1 �1 2 j�H̃4	 1

µ
D 2

j

1 2 j2

∂
�H̃2 1 H̃3�

∏
,

(18)
where D � �t0 2 t���4M2�. The remaining amplitudes
can be easily obtained from the relations (15), (16), and

Al02m,l2m � Al0m,lm�H̃i ! 2H̃i� . (19)

As required by angular momentum conservation, one gets
a factor

p
t0 2 t for each unit of helicity flip. Note that

H2,4 and H̃4 appear only with longitudinal deuteron polar-
ization and that the only GPDs appearing in double helicity
flip amplitudes are H3 and H̃2,3. In the forward limit we
have A�x, 0, 0�l1,l1 � ql

" �x�, A�x, 0, 0�l2,l2 � ql
# �x�

and find the relations (12).
Gluon distributions.—Let us turn to the gluon distribu-

tions in the deuteron. Instead of the matrix elements (1),
(2), we now have
4
nanb

P ? n

Z dk

2p
eixkP?n�p0, l0jFam�2kn�Fm

b�kn� jp, l� �
X

i

e0�bV
�i�
baeaH

g
i �x, j, t� ,

24i
nanb

P ? n

Z dk

2p
eixkP?n�p 0, l0jFam�2kn�F̃m

b�kn� jp, l� �
X

i

e0�bA
�i�
baeaH̃

g
i �x, j, t� ,

(20)

with F̃ab � 1
2 eabgdFgd. We take the same tensors V �i�, A�i� as for quark distributions, given in Eq. (6). Note that the

H
g
i are even and the H̃

g
i odd in x. Their behavior under time reversal is the same as in (9) for the corresponding quark
142302-3
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distributions, and the definitions and expressions of the
helicity amplitudes A

g
l0m,lm are also analogous to the

quark case. The forward limit is now Ag�x, 0, 0�l1,l1 �
xgl

" �x� and Ag�x, 0, 0�l2,l2 � xgl
# �x�, with an extra fac-

tor x compared to the quark case.
Some phenomenology.—The deuteron GPDs can be ac-

cessed in hard exclusive processes such as deeply virtual
Compton scattering in ed ! edg, and electroproduction
ed ! edM of a meson or a meson pair [13]. The relevant
kinematical limit is that of large invariant momentum trans-
fer Q2 to the lepton at fixed xB and t, where the Bjorken
variable xB is defined as in deep inelastic scattering. Fac-
torization formulas are the same as for nucleon targets
[5,14], with the appropriate replacement of the hadronic
matrix elements, but the same hard scattering kernels. The
Q2 behavior of the amplitudes and the selection rules for
photon and meson helicities also remain the same, since
they depend on the hard-scattering process, not on the tar-
get spin. Electroproduction of a pseudoscalar meson se-
lects the GPDs H̃i, vector meson production involves the
Hi and H

g
i , and all distributions appear in Compton scat-

tering. Notice that the isosinglet nature of the deuteron
simplifies the flavor structure of the GPDs and thus of the
scattering amplitudes. One consequence is that pion ex-
change does not contribute to any of these processes, in
contrast to the nucleon case, where it may give impor-
tant contributions through the quark distribution Ẽ [15].
In kinematics where the Bethe-Heitler process dominates
in electroproduction ed ! edg, one can use the methods
of [16] to study Compton scattering through the interfer-
ence of the two processes. At sufficiently large Q2 this
interference term gives access to a linear combination of
GPDs, weighted with the electromagnetic deuteron form
factors G1,2,3�t�.

Discussion.—To get a feeling for the physics of GPDs
in the deuteron, consider the approximation where they
are written as a convolution of the nucleon GPDs with the
light-cone wave function cp1n for a proton and a neu-
tron in the deuteron [17,18]. The struck nucleon then has
to absorb the entire momentum transfer, in particular, its
plus component parametrized by j, and still fit into the fi-
nal deuteron. Assuming for simplicity that cp1n is only
nonzero if the plus-momentum fraction of the proton in the
deuteron is between 1

2 �1 2 w� and 1
2 �1 1 w�, one finds

that all Hi and H̃i vanish for j . w. The j dependence
of the deuteron GPDs thus reflects the width of the wave
function cp1n in longitudinal momentum fraction. For j

well above w they provide access to deuteron wave func-
tion components that cannot be described in terms of indi-
vidual nucleons. To unravel such components in inclusive
deep inelastic scattering at xB . 1 has turned out to be
difficult. Approaching this region from below, the struck
quark has to take the entire momentum of a nucleon in
the convolution picture, so that not only the deuteron wave
function cp1n becomes small but also the parton density
in the nucleon. This is not the case for GPDs with their
independent momentum variables x and j: at j . w one
142302-4
can still have any value for the plus-momentum fraction of
the struck parton in the target.

We also note that, since in a convolution model b1 re-
quires a d wave component in cp1n [1,17], the same holds
for H5. Double helicity flip amplitudes also need a d wave
admixture: the helicity flip of a nucleon cannot exceed
one unit, so that orbital angular momentum is necessary.
Hence H3 and H̃2,3 involve the d wave part of cp1n.

In this Letter we have focused on the case where the
deuteron scatters elastically. One may extend our study to
the case where it dissociates into a proton and neutron, or
a more complicated hadronic system, introducing appro-
priate transition GPDs. Factorization still holds in the pro-
cesses discussed above, provided that the invariant mass
of the dissociative system is small compared with the hard
scale Q2.

Let us finally stress that for low enough j the general-
ized parton distributions for elastic deuteron transitions are
by no means small; neither is there any suppressing factor
in the cross sections. It should thus be possible to perform
exclusive electroproduction experiments on a deuteron tar-
get where those on a nucleon are possible. We hope for
a rich harvest of physics on this topic in the forthcoming
years at existing facilities such as DESY and Jefferson Lab.
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