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The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommu-
tative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model
extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments
bound the scale of the noncommutativity parameter to �10 TeV�22.
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The idea that spacetime may intrinsically involve non-
commutative coordinates has undergone a recent revival
following the realization that this occurs naturally in string
theory [1]. In this framework, the commutator of the co-
ordinates xm in the spacetime manifold is

�xm, xn� � iumn, (1)

where umn is real and antisymmetric. It is of interest to
speculate that the physical world might involve noncom-
mutative coordinates and to ask about current experimental
sensitivity to putative realistic noncommutative quantum
field theories.

The primary goal of this work is to study a physical is-
sue that is central to any realistic noncommutative theory:
the role of Lorentz symmetry. Violations of Lorentz sym-
metry are intrinsic to noncommutative theories by virtue
of nonzero umn in Eq. (1). Our study of these violations is
motivated partly by theoretical progress in understanding
the physics associated with Lorentz violation in ordinary
quantum field theory and partly by recent experimental ad-
vances that make Lorentz tests among the most sensitive
null experiments in existence [2].

One approach to constructing a noncommutative quan-
tum field theory is to promote an established ordinary the-
ory to a noncommutative one by replacing ordinary fields
with noncommutative fields and ordinary products with
Moyal � products, defined by

f � g�x� � exp�1
2 iu

mn≠xm≠yn �f�x�g� y�jx�y . (2)

For gauge theories such as quantum electrodynamics
(QED), ordinary gauge transformations must be modified
to noncommutative generalizations. For noncommutative
QED [3], the Hermitian Lagrangian is

L �
1
2 iĉ � gm

$
D̂mĉ 2 mĉ � ĉ 2

1
4q2 F̂mn � F̂mn.

(3)
Here, carets indicate noncommutative quantities, F̂mn �
≠mÂn 2 ≠nÂm 2 i�Âm, Ân ��, and D̂mĉ � ≠mĉ 2 iÂm � ĉ ,

with f̂ �
$
D̂mĝ � f̂ � D̂mĝ 2 D̂mf̂ � ĝ. Note that the
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inclusion of particles of charge other than 0 or 61 is
problematic [3]. This poses difficulties for a noncommu-
tative generalization of the standard model, which would
require other values for hypercharge assignments. In fact,
noncommutative QED is similar to U�N� gauge theory as
N ! `, and the allowed representations are the adjoint,
fundamental, and antifundamental. In D-brane physics,
adding two D-branes of charge 1 under a noncommutative
U(1) leads to noncommutative U(2) gauge theory, which
has non-Abelian U(2) gauge theory as its commutative
limit instead of U(1) with charge 2.

The implementation of Lorentz transformations in a
noncommutative theory is more involved than usual be-
cause the parameter umn carries Lorentz indices. Two
distinct types of Lorentz transformation exist [4]. For
example, Eq. (3) is fully covariant under observer Lorentz
transformations: rotations or boosts of the observer inertial
frame leave the physics unchanged because both the field
operators and umn transform covariantly. However, these
coordinate changes differ profoundly from rotations or
boosts of a particle or localized field configuration within
a fixed observer frame. The latter, called particle Lorentz
transformations, leave umn unaffected and hence modify
the physics. This situation is closely analogous to the re-
sult of spontaneous Lorentz violation [5], with umn playing
the role of a tensor expectation value. In effect, umn pro-
vides a four-dimensional directionality to spacetime in any
fixed inertial frame. Any noncommutative theory therefore
violates particle Lorentz symmetry.

The procedure leading to Eq. (3) lacks direct informa-
tion about the identification of realistic physical variables
with specific operators. For instance, the electron field ĉ

in the noncommutative QED (3) is itself noncommutative
and obeys an unconventional gauge transformation law, so
the identification of its quantum with the physical elec-
tron is nontrivial. Although it is presumably feasible in
principle to calculate physical observables via noncom-
mutative fields, we use here instead a correspondence be-
tween a noncommutative gauge theory and a conventional
gauge theory, called the Seiberg-Witten map [6]. This per-
mits the construction of an ordinary theory with ordinary
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gauge transformations having physical content guaranteed
equivalent to the noncommutative theory.

The existence of an equivalent ordinary gauge theory for
any realistic noncommutative theory involving noncom-
mutative standard-model fields is of interest because there
already exists a general extension of the ordinary standard
model allowing for Lorentz violation [4,7]. This theory can
be defined as the standard-model Lagrangian plus all pos-
sible gauge-invariant terms involving standard-model
fields that preserve observer Lorentz invariance while
breaking particle Lorentz symmetry. It therefore fol-
lows that any realistic noncommutative theory must be
physically equivalent to a subset of the standard-model
extension.

A variety of theoretical and experimental implications
of the standard-model extension are known, and the exis-
tence of the equivalence ensures some of these also hold
for any realistic noncommutative theory. The Lorentz-
violating terms in the standard-model extension are
contractions of field operators that transform as Lorentz
tensors with coefficients that carry observer Lorentz
indices. In any subset of this theory equivalent to a non-
commutative theory, the coefficients for Lorentz violation
must be expressed solely in terms of umn. This has several
immediate consequences for any realistic noncommutative
theory. As a simple example, energy and momentum are
conserved in the full standard-model extension provided
the coefficients for Lorentz violation are constant. Since
umn is independent of position, energy and momentum
are conserved in any realistic noncommutative theory.

As another example, terms in the standard-model exten-
sion violate CPT if and only if the coefficients for Lorentz
violation carry an odd number of indices. Since it is impos-
sible to construct such a coefficient from combinations of
umn , it immediately follows that any realistic noncommu-
tative theory necessarily preserves CPT . This generalizes
a result obtained for the case of noncommutative QED [8].
In contrast, all other combinations of the discrete symme-
tries C, P, T can be broken in a general noncommutative
theory.

Further insight is provided by the observation that in a
noncommutative field theory each factor of umn is accom-
panied by two derivatives. Since bilinear fermion opera-
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tors in a noncommutative theory have mass dimension 3
or 4, the minimal dimension of the corresponding Lorentz-
violating bilinear operators in the equivalent Lagrangian is
5 or 6. In fact, higher-dimensional terms and nonlocal in-
teractions are required for consistency at high scales in the
full standard-model extension [9]. However, the absence
here of Lorentz-violating operators of dimension 3 or 4
implies the fermionic sector of any realistic noncommuta-
tive theory is free of perturbative difficulties with stability
and causality. This implies, for example, the absence of
superluminal information transfer and conventional spin
statistics.

Some noncommutative theories with u0j fi 0 exhibit
difficulties with perturbative unitarity [10], but ones with
only ujk nonzero are acceptable. Since a theory with
u0j fi 0, umnumn . 0, and umnũmn � 0 can be converted
into one with only ujk nonzero by a suitable observer
Lorentz transformation, the presence of observer Lorentz
invariance implies that there are no difficulties with per-
turbative unitarity provided umnumn . 0, umnũmn � 0,
which allows certain cases with u0j fi 0. A similar con-
dition presumably applies for open bosonic strings, where
the presence of a nonzero Bjk field is known to be equiva-
lent to a constant magnetic field on a Dp brane [6]. In
the standard-model extension, Lorentz-violating operators
with extra time-derivative couplings do cause some inter-
pretational difficulties, but these can be handled by re-
defining the fields to evolve canonically [9,11]. We expect
analogous methods to apply for noncommutative theories
with u0j fi 0.

For definiteness, we focus primarily on the noncommu-
tative QED (3) with umnumn . 0 in the remainder of this
Letter. In this case, the explicit form of the Seiberg-Witten
map is known to lowest order in umn [6,12]:

Âm � Am 2
1
2 uabAa�≠bAm 1 Fbm� ,

ĉ � c 2
1
2uabAa≠bc .

(4)

This leading-order form suffices for many purposes, since
any physical noncommutativity in nature must be small.

Substitution of the solution (4) into Eq. (3) and applying
the definition (2) yields the ordinary quantum field theory
that is physically equivalent to noncommutative QED to
leading order in umn:
L �
1
2 icgm$Dmc 2 mcc 2

1
4FmnF

mn 2
1
8 iquabFabcgm$Dmc 1

1
4 iquabFamcgm$Dbc 1

1
4mquabFabcc

2
1
2quabFamFbnF

mn 1
1
8quabFabFmnF

mn. (5)
In this equation, we have redefined the gauge field Am !

qAm to display the charge coupling of the physical fermion,
and Dmc � ≠mc 2 iqAmc as usual.

The expression (5) is manifestly gauge invariant. It con-
sists of ordinary QED plus nonrenormalizable Lorentz-
violating corrections and is therefore a subset of the QED
limit of the standard-model extension, as expected. How-
ever, many terms allowed in the latter theory are absent, in-
cluding all those that violate CPT . Note that the g-matrix
structure in Eq. (5) is inherited from the usual one in
Eq. (3), so no couplings to axial-vector or tensor bilinears
appear. Note also that all noncommutative effects vanish
for neutral fermions.

With this explicit theory in hand, we can consider some
possible experimental implications of noncommutativity.
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Here, we focus attention on the case of experiments in-
volving constant electromagnetic fields. For this purpose,
it is useful to extract from the theory (5) an effective La-
grangian describing the leading-order effects of noncom-
mutativity in constant electromagnetic fields. We therefore
make the replacement Fmn ! fmn 1 Fmn , where fmn is
understood to be a constant background field and Fmn now
denotes a small dynamical fluctuation.

Keeping only terms up to quadratic order in the fluctua-
tions and performing a physically irrelevant rescaling of
the fields c and Am to maintain conventionally normalized
kinetic terms yields the Hermitian Lagrangian

L �
1
2 icgm$Dmc 2 mcc 2

1
4FmnF

mn

1
1
2 icmncgm$Dnc 2

1
4kFabgdF

abFgd. (6)

In this equation, the charge q in the covariant derivative is
replaced with a scaled effective value [13]

qeff � �1 1
1
4qf

mnumn �q . (7)

The dimensionless coefficients cmn and kFabgd are

cmn � 2
1
2qfm

luln ,

kFabgd � 2qfa
lulghbd 1

1
2qfagubd

2
1
4qfabugd 2 �a $ b� 2 �g $ d�

(8)

1 �ab $ gd� .

The notation here is that of the standard-model extension
in its QED limit [4]. Of the ten types of term allowed in the
latter theory, six are excluded here by CPT symmetry and
two by the requirement of no couplings to axial or tensor
fermion bilinears. Note that cmn , kFabgd depend linearly
on the background electric and magnetic fields, as required
for dimensional consistency.

In the photon sector, there are presently no published
bounds on the coefficients kFabgd. The modified Maxwell
equations in vacuo have been studied, and it appears fea-
sible to place bounds at the scale of about 10228 on certain
components of kFabgd, using measurements of the bire-
fringence of radiation from cosmological sources [4,14].
However, the dependence of kFabgd on the minuscule in-
tergalactic magnetic field and the likely dilution of any
effect due to random field orientations implies only weak
bounds on umn are likely.

Instead, we turn to the fermion sector. Numerous tests
of Lorentz violation have been performed in the context of
the standard-model extension, but many of them can detect
only CPT violation or anomalous spin couplings and so
place no bounds on cmn . One class of tests with sensitivity
to cmn involves the recent clock-comparison experiments
[15]. These monitor the difference between two atomic
hyperfine or Zeeman transition frequencies, searching for
variations as the Earth rotates. The existing analysis [16]
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of the implications of these experiments can be adapted to
the present situation.

The energy shift d in an atomic state labeled jF,mF�
can be calculated as the expectation value of the Hermitian
perturbation Hamiltonian obtained from Eq. (6). It has the
form d � m̃F

P
w gwc̃wq , where m̃F is a ratio of Clebsch-

Gordan coefficients, w labels the particle species (electron,
proton, neutron) of mass mw and charge qw, gw is an
expectation value of momentum operators in an extremal
state of the atomic or nuclear submanifold of levels, and
c̃wq � mw�c11 1 c22 2 2c33� is a quadrupole combination
of coefficients for Lorentz violation. Expressions for m̃F
and gw are provided in Eqs. (7) and (10) of Ref. [16].
With the magnetic field f12 � 2B along the 3 axis in the
laboratory frame, we find cwq � mwqwBu12.

In the laboratory frame rotating with the Earth, the pa-
rameters mw, qw , and B are fixed but u12 varies with time
t. To display the corresponding t dependence of the energy
shift d, we use a nonrelativistic transformation to convert
to nonrotating coordinates �X, Y ,Z� compatible with ce-
lestial equatorial coordinates [16]. This gives

d � E0 1 E1X cosVt 1 E1Y sinVt , (9)

where V is the Earth’s sidereal rotation frequency, E0 is
an irrelevant constant, and

�E1X ,E1Y � � m̃FB sinx
X

w
qwmwgw�uYZ, uZX � , (10)

with x the angle between the 3 and the Z axes. Note
that, despite its quadrupole nature, the energy shift d is
periodic in Vt. This contrasts with the 2Vt dependence
arising when cmn is independent of B.

We can apply these results to recent clock-comparison
tests [15]. Most place bounds on variations with Vt but in
the context of the nuclear valence model are sensitive only
to effects from the neutron, which vanish here because the
neutron is uncharged. The exception is the experiment of
Berglund et al., which compares transitions in 199Hg and
133Cs. In this experiment, as in the others, the electronic
angular momentum is J # 1�2, so ge vanishes and there
is no signal associated with the electron. However, the nu-
clear spin of the 133Cs atom is I � 7�2, and the nuclear va-
lence model predicts the valence nucleon to be a proton, so
the experimental limit of about 100 nHz on possible side-
real variations yields a bound juYZ j, juZX j & �10 GeV�22.

The above bound is suppressed due to the weak mag-
netic field (B � 5 mG) used in the experiment. In con-
trast, the experiment of Prestage et al. involves an applied
field of about 1 T. It is therefore worth considering pos-
sible effects outside the valence model. The explicit value
of gp in Eq. (10) is an expectation value of momentum op-
erators in the multiparticle wave function jc� for the 9Be
nucleus used in the experiment [17]:

jc� � C1�1S, 2P� 1 C2�1D, 2P� 1 C3�1D, 2D� . (11)
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Each term in parentheses refers to the proton and neu-
tron spin and orbital angular momentum according to
�2Sp11Lp , 2Sn11Ln�, and the coefficients are C1 	 0.731,
C2 	 20.344, C3 	 20.589. A calculation gives

gp � 2�7�C2
2 2 C2

3 � 1 8
p

5C1C2�Kp�150 . (12)

Here, Kp � 
p2�p�m2
p 	 1022, yielding gp 	 5 3

1024. Using the results of Prestage et al., we find

juYZ j, juZX j & �10 TeV�22, (13)

as a conservative limit [18].
Other low-energy bounds on umn exist. Measurements

of the Lamb shift give [19] a bound several orders
of magnitude weaker than (13). A speculative bound
some 20 orders of magnitude stronger than (13) has
been claimed [20] from an analysis of clock-comparison
experiments. This analysis finds terms with anomalous
spin couplings and obtains a bound by supposing that,
in an eventual formulation of noncommutative quantum
chromodynamics, such couplings would produce a coher-
ent effect involving the nuclear force.

For bounds on cmn, high-energy experiments appear to
provide no particular advantage over low-energy ones, ba-
sically because the effects scale with momentum similar to
those from the usual fermion kinetic term [21]. Assuming
the interactions in Eq. (5) affect at least some high-energy
cross sections, the attainable high-energy bound can be
crudely estimated as about �1 TeV�22 by noting that
leading-order couplings involving umn come with two
powers of momentum, while cross sections at 100 GeV
are typically known to no better than about 1%. This
bound is compatible with existing analyses [22].

Further theoretical analysis might improve the bound
(13). For example, it may be worth studying the effect
of the magnetic field at the nucleus caused by atomic elec-
trons, since under suitable circumstances the effect of this
field in cmn might dominate the applied one. Also, addi-
tional experimental sensitivity might arise if the neutron is
coupled in the adjoint representation of noncommutative
QED. The range of relevant tests might be further broad-
ened if additional g-matrix structures arise in radiative cor-
rections in the theory (5) or in more complicated versions
of noncommutative QED obtained from the radiative ef-
fective action in ordinary QED.

Several experimental options exist for improving the
bound (13). One would be to perform a clock-comparison
test in a large field using substances that are particularly
favorable for theoretical calculations. These include the
subset of species listed in Table III of Ref. [16] that have
quadrupole sensitivity to proton effects. It would be ideal
to compare one such species to a reference for which non-
commutative effects are absent. For example, an experi-
ment comparing transitions in 209Bi with 3He or, perhaps
more feasibly, 87Rb with 3He has the potential to provide
an improved reliable bound on umn .
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