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Ferromagnetism in a Lattice of Bose-Einstein Condensates
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We show that an ensemble of spinor Bose-Einstein condensates confined in a one-dimensional optical
lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the
magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state
physics, but occurs with bosons instead of fermions.
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The Heisenberg model of spin-spin interactions is con-
sidered as the starting point for understanding many com-
plex magnetic structures in solids. In particular, it explains
the existence of ferromagnetism and antiferromagnetism at
temperatures below the Curie temperature. It is defined by
the spin Hamiltonian [1]

Hspin � 2
X

JijSi ? Sj ,

where Si is the spin operator for the ith electron, and Jij

are known as the exchange coupling constants. This Ham-
iltonian arises from the direct Coulomb interaction among
electrons and the Pauli exclusion principle. In addition
to the exchange interaction, there exists another important
type of magnetic interaction, the magnetic dipole-dipole
interaction. However, in solid materials the dipolar cou-
pling is typically several orders of magnitude weaker than
the exchange coupling, and would correspond to Curie
temperatures much below the observed ones. Hence its
contribution to the spin Hamiltonian can be neglected in
practice. (We note however that the magnetic dipole-dipole
interaction plays an important role in domain formation
in macroscopic samples.) It follows from this argument
that ferromagnetism is not generally expected to occur in
bosonic lattices of neutral atoms, a result of the inappli-
cability of the Pauli principle, the absence of Coulomb
interaction, and small atomic magnetic dipole moments.
However, we qualify this remark by noting that as a result
of accurate recent measurements of the scattering length
of spin-changing collisions, it is now established that the
ground state of optically trapped 87Rb spinor Bose conden-
sates is ferromagnetic, an important result that we use in
the following [2,3].

The goal of this paper is to show that this result, com-
bined with the recent experimental realization of regular ar-
rays of Bose-Einstein condensates in optical lattices, leads
to a situation where it becomes possible to carry out de-
tailed static and dynamic studies of magnetism on one- to
three-dimensional periodic lattices.

Quantum degenerate Bose gases on optical lattices were
first used to demonstrate “mode-locked” atom lasers [4]. It
has also been theoretically demonstrated that they undergo
a Mott insulator phase transition as the depth of the lattice
wells is increased [5]. Recently, they have become of
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interest in the study of quantum chaos [6,7]. Here, we
show that spinor condensates, localized in optical lattices
deep enough for the individual sites to be independent, can
undergo a ferromagneticlike phase transition that leads to
a “macroscopic” magnetization of the condensate array.

We consider specifically the case of spinor 87Rb con-
densates [8,9], which are as we have mentioned individual
ferromagnets of random directions in the absence of exter-
nal fields and magnetic dipole-dipole interaction. We show
that the magnetic dipole-dipole interaction between lattice
sites can spontaneously align the magnetization of the indi-
vidual sites. This is possible because of the Bose enhanced
magnetic dipole moments of the condensate which in turn
enhances the strength of the magnetic dipolar interaction.

Our starting point is the Hamiltonian H describing an
F � 1 spinor condensate at zero temperature trapped in
an optical lattice, subject to a magnetic dipole-dipole in-
teraction Hdd and is coupled to an external magnetic field
via the magnetic dipole Hamiltonian HB [10–13],

H � H0 1 Hdd 1 HB . (1)

Here

H0 �
Z

d3r cy
a�r� �2h̄2=2�2m 1 VL�r��ca�r�

1 �ls�2�
Z

d3r cy
a�r�cy

b �r�cb�r�ca�r�

1 �la�2�
Z

d3r cy
a�r�cy

m�r�Fab ? Fmncn�r�cb �r�

describes the interaction of the atoms with the lattice po-
tential VL�r� and ground-state collisions. It includes an
implicit sum over the indices �a, b, m, n� � �0, 61� that
label the three Zeeman sublevels. The parameters ls

and la characterize the short-range spin-independent and
spin-changing s-wave collisions, respectively. Specifi-
cally, la is proportional to the difference between the
s-wave scattering lengths in the triplet and singlet channels
[11–13]. It has recently been measured to be negative for
87Rb, accounting for its ferromagnetic ground state [2].

Our model includes the long-range magnetic dipole-
dipole interaction between different lattice sites, but ne-
glects it within each site, assuming that it is much weaker
than the s-wave interaction described by H0 [14]. We also
© 2001 The American Physical Society 140405-1
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assume that the optical lattice potential is deep enough that
there is no spatial overlap between the condensates at dif-
ferent lattice sites. We can then expand the atomic field
operator as c�r� �

P
i

P
a�0,61 âa�i�fi�r� where i labels

the lattice sites.
The Hartree wave function fi�r�, determined by mini-

mizing the total energy, is the wave function of the con-
densate at the ith site. It is assumed that all Zeeman
components share the same spatial wave function. If the
condensates at each lattice site contain the same num-
ber N of atoms, then the ground-state wave functions for
different sites have the same form fi�r� � f�r 2 ri�.
Under this condition, the dipolar interaction potential is
Hdd �

P
i,jfii V

ij
dd with

V
ij
dd �

m0

4p

∑
�mi ? �mj

jrijj3
2

3� �mi ? r̂ij� � �mj ? r̂ij�
jrijj3

∏
, (2)

where m0 is the vacuum permeability, rij � ri 2 rj ,
r̂ij � rij�jrij j, ri is the coordinate of the ith site, and
�mi � gSi is the magnetic dipole moment at site i, with
Si � ây

a�i�Fabâb�i� being the total angular momentum
operator and g � gFmB the gyromagnetic ratio. Finally,
the coupling of the atoms to the external magnetic field
Bext is described by

HB � 2g
X

i

Si ? Bext .

In this Letter we consider a one-dimensional optical lat-
tice along the z direction, which we also choose as the
quantization axis. Hence

V
ij
dd �

m0

4pjrij j3
� �mi ? �mj 2 3mz

i mz
j� ,

with m
z
j being the z component of �mj. In the absence

of long-range magnetic dipole-dipole interaction and of
external magnetic fields, the individual condensates can
therefore be considered as independent “magnets” whose
pseudospin vectors point in random directions, with no
spin correlations between sites. Our goal is to determine
the spin structure of the system if the different sites are
allowed to interact with each other through the magnetic
dipole-dipole interaction.

In the absence of spatial overlap between individual con-
densates, and neglecting unimportant constants, the total
Hamiltonian of the system takes the form [13]

H �
X

i

∑
l0

aS2
i 1 g

X
jfii

lijSi ? Sj

23g
X
jfii

lijS
z
i Sz

j 2 gSi ? Bext

∏
, (3)

where l0
a � �1�2�la

R
d3r jfi�r�j4 and lij � gm0�

�4pjrij j
3�.

In general the external magnetic field consists of two
contributions: a controlled, external applied field; and an
effective “stray” field that accounts for all possible ef-
fects from the experimental environment and the system
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itself. A typical example is the environmental magnetic
fluctuations. In the present case, we take the applied field
along the quantization axis z. The effective environmental
magnetic field, in contrast, can have any orientation. We
choose it without loss of generality to be along the trans-
verse direction, including any longitudinal component in
the definition of the applied field. Hence the external field
has the form

Bext � Bz ẑ 1 Brr̂,

where r �
p

x2 1 y2 is the radial coordinate.
If the optical lattice is sufficiently long, one can safely

neglect the boundary effects and concentrate on a generic
single site i of spin S. Its Hamiltonian reads

h � l0
aS2 2 gS ?

∑µ
Bz 1 2

X
jfii

lijS
z
j

∂
ẑ

1

µ
Br 2

X
jfii

lijS
r
j

∂
r̂

∏
. (4)

We determine its ground state in the mean-field approxi-
mation (also known as the Weiss molecular potential ap-
proximation) [15]. It consists of replacing the operators
Sa

j , a � r, z, by their ground-state expectation value

�Sa
j 	 ! Ma � Nma , (5)

which is assumed to be the same for different sites. We
remark that mz is nothing but the difference in population
of the Zeeman sublevels of magnetic quantum numbers
61. This allows us to approximate the Hamiltonian (4) by

hmf � l0
aS2 2 gS ? Beff , (6)

where we have introduced the effective magnetic field

Beff � �Bz 1 2Lmz�ẑ 1 �Bx 2 Lmr�r̂ (7)

and L � N
P

jfii lij .
We mentioned that the individual spinor condensates at

the lattice sites are ferromagnetic, l0
a , 0. In that case,

the ground state of the mean-field Hamiltonian (7) must
correspond to a situation where the condensate at site i
under consideration must be aligned along Beff and takes
its maximum possible value N . That is, the ground state
of the mean-field Hamiltonian (6) is simply

jGS	 � jN ,N	Beff , (8)

where the first number denotes the total angular momen-
tum and the second its component along the direction of
Beff. Note that jGS	 represents a spin coherent state in the
basis of jS, Sz	. The fact that the ground-state magnetic
dipole moment of each lattice site is N times that of an indi-
vidual atom results in a significant magnetic dipole-dipole
interaction even for lattice points separated by hundreds
of nanometers. This feature, which can be interpreted as
a signature of Bose enhancement, is in stark contrast with
usual ferromagnetism, where the magnetic interaction is
negligible compared to exchange and where the use of fer-
mions is essential [15].
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The mean-field ground state of Eq. (8) allows us to cal-
culate the magnetization components mz and mx . One
finds readily

ma �
1
N

�GSjSa
i jGS	 � cosua , (9)

where ua is the angle between Beff and the a axis.
For Bz � 0, Eq. (9) yields

mz �
2Lmzq

�2Lmz�2 1 �Br 2 Lmr�2
, (10a)

mr �
Br 2 Lmrq

�2Lmz�2 1 �Br 2 Lmr�2
. (10b)

The solutions to Eqs. (10) can be divided into two cases:
(1) For Br $ 3L, the only solutions are mz � 0 and

mr � 1. That is, the lattice of condensates is magnetically
polarized along the transverse magnetic field.

(2) For Br , 3L, there are two coexisting sets of
solutions: (i) mz � 0 and mr � 1; and (ii) mz �

6
q

1 2 �Br�3L�2 and mr � Br�3L. However, it is
easily seen that the state associated with the latter solu-
tions has the lower energy. Hence it corresponds to the
true ground state, while solution (i) represents an unstable
equilibrium.

We have, then, the following situation: As the environ-
mental effective magnetic field strength is reduced below
a critical value 3L, the lattice ceases to be polarized along
the direction of that field. A phase transition occurs, and a
spontaneous magnetization along the z direction appears,
characterized by a finite mz .

This phenomenon is reminiscent of conventional fer-
romagnetism. Indeed, our model is somewhat analogous
to the Ising model [1], with the environmental transverse
magnetic field Br playing the role of temperature. For
Br � 0—corresponding to zero temperature in the Ising
model — the spins at each lattice site Si align themselves
along the lattice direction, even in the absence of longitudi-
nal field. This spontaneous spin magnetization diminishes
as Br increases, and completely vanishes if Br exceeds
the critical value 3L— the analog of the Curie temperature
in the Ising model. We note however that the two cases
exhibit important qualitative differences: For example, no
spontaneous magnetization occurs in the 1D Ising model,
for any finite temperature [1].

Our analysis so far assumes an infinite one-dimensional
lattice. This assumption is required for the validity of
mean-field approximation. We note however that the ap-
pearance of a spontaneous magnetization does not rely on
this condition being fulfilled. We demonstrate this point
by considering just two lattice sites, that is, a double-well
situation. In this case, we can numerically solve the Ham-
iltonian (3), without invoking the mean-field approxima-
tion, by expanding the Hamiltonian matrix on the basis of
jS1 � N , Sz

1 	 ≠ jS2 � N , Sz
2 	. Figure 1 shows the spon-
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taneous magnetization mz as a function of the external
field strength Br . As the Hamiltonian matrix has a size
of �2N 1 1�2�2N 1 1�2, we cannot use a very large N .
However, as we can see from the figure, as N increases,
mz rapidly approaches the mean-field results. Hence the
mean-field treatment is in fact a surprisingly good approxi-
mation for our purpose.

To estimate the feasibility of an experimental detec-
tion of the spontaneous magnetization, we consider as
an example the F � 1 electronic ground state �3S1�2� of
87Rb, for which l0

a , 0 [2,3]. The Landé factor for this
state is gF � 21�2. For an optical potential of period
equal to 426 nm (nearest neighbor separation) we find
L � N

P
jfii lij 
 1.6N 3 1027 G. If the particle num-

ber at each site is N � 2000, this gives a critical value of
the environmental magnetic field of 3L � 1 mG. These
numbers indicate that the observation of spontaneous mag-
netization in a lattice of spinor condensates is well within
experimental reach.

In a typical experimental situation, the environmental
magnetic field is likely to exhibit temporal fluctuations.
To account for them, we assume that this field has a uni-
form angular distribution and that the fluctuations in field
strength have a width DB. The time-averaged environmen-
tal field is again assumed to be along the transverse direc-
tion, with strength Br . Assuming the magnetization of the
system follows the field fluctuations adiabatically, it is not
difficult to include this effect into our mean-field treatment.
The time-averaged spontaneous magnetization along the z
axis satisfies then the cubic equation

�1 2 m2
z � �9L2m2

z 1 D2
B�2� � �B2

r 1 D2
B�m2

z .

Figure 2 illustrates mz as a function of Br for various
DB. As we can see, the effect of the field fluctuation is to
decrease the maximum spontaneous magnetization, and to
increase the critical field strength at which the spontaneous

mz

Bρ /Λ
FIG. 1. Spontaneous magnetization as a function of environ-
mental magnetic field strength. Only the positive values are
plotted. The dashed line represents the mean-field result mz �p

1 2 �Bx�3L�2 and the solid lines, from left to right, corre-
spond to the exact numerical results for a two-site lattice with
N � 10, 15, and 25 atoms, respectively.
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mz

Bρ /Λ

∆B=0∆B=Λ

∆B=2Λ

∆B=3Λ

FIG. 2. Mean-field results of the time-averaged spontaneous
magnetization as a function of environmental magnetic field
strength, taking the magnetic field fluctuations into accout. Only
the positive values are plotted.

magnetization vanishes. The maximun mz at Br � 0 de-
creases from 1 to 1�3 when DB increases from 0 to infinity.

Recently, condensates trapped in periodic optical poten-
tials have attracted much attention. The phase coherence
and atom statistics of the system have been studied ex-
perimentally [4,16,17]. However their magnetic properties
have not been fully explored. A few years ago, Meacher
et al. observed experimentally the paramagnetic behavior
of cold (but noncondensed) cesium atoms confined in an
optical lattice [18]. Here we have demonstrated that by
replacing the cold atoms with a spinor condensate, ferro-
magnetism can be observed. This is made possible by the
collectively enhanced magnetic moments of the condensate
which in turn enhances magnetic dipole-dipole interaction
between different lattice sites.

In future work it will be interesting to study the dynami-
cal response of the system under the effect of an external
time-dependent longitudinal magnetic field. The instanta-
neous magnetization in this case is likely to form hysteresis
loops which might find applications, e.g., in quantum in-
formation processing. Further studies should also include
the properties of finite temperature excitations of the sys-
tem, which correspond to spin waves. The extension of this
work beyond one-dimensional lattices also shows much
promise: Although it is predominantly ferromagnetic in
1D, the dipole-dipole interaction is anisotropic and con-
tains both ferromagnetic and antiferromagnetic terms. In
higher-dimensional lattices, the ground-state spin structure
will thus become much richer.
140405-4
We conclude by remarking that in addition to this intrin-
sic interest, the study of the magnetic properties of spinor
condensate lattices provides us with a highly controllable
test system to study fundamental static and dynamical as-
pects of magnetism and lattice dynamics, including, e.g.,
the role of dimensionality in phase transitions and macro-
scopic quantum tunneling of the magnetic moments.
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