
VOLUME 87, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 1 OCTOBER 2001
Bloch Oscillations and Mean-Field Effects of Bose-Einstein Condensates in 1D Optical Lattices
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We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and ac-
celerated them by chirping the frequency difference between the two lattice beams. For small values of
the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-
Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied
and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi
and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate
densities and trap geometries, yielding good qualitative agreement with theoretical calculations.

DOI: 10.1103/PhysRevLett.87.140402 PACS numbers: 03.75.Fi, 32.80.Pj
The properties of ultracold atoms in periodic light-shift
potentials in one, two, and three dimensions have been in-
vestigated extensively in the past ten years [1]. In near-
resonant and, more recently, far-detuned optical lattices,
a variety of phenomena have been studied, such as the
magnetic properties of atoms in optical lattices, revivals of
wave-packet oscillations, and Bloch oscillations in accel-
erated lattices [2]. While in most of the original optical
lattice experiments the atomic clouds had temperatures in
the micro-Kelvin range, corresponding to a few recoil ener-
gies of the atoms, samples with subrecoil energies are now
routinely produced in Bose-Einstein condensation experi-
ments. Many aspects of Bose-Einstein condensed atomic
clouds (BECs) have been studied [3], ranging from col-
lective excitations to superfluid properties and quantized
vortices. So far, the majority of these experiments have
been carried out essentially in harmonic-oscillator poten-
tials provided by magnetic traps or optical dipole traps.
The properties of BECs in periodic potentials constitute a
vast new field of research (see, for instance, Refs. [4–12]).
Several experiments in the pulsed standing wave regime
[13,14] as well as studies of the tunneling of BECs out
of the potential wells of a shallow optical lattice in the
presence of gravity [15], the creation of squeezed states
in condensates [16], and the search for superfluid dynam-
ics [17] have taken the first steps in that direction. In this
paper, we present the results of experiments on BECs of
87Rb atoms in accelerated optical lattices. In particular,
we demonstrate coherent acceleration and Bloch oscilla-
tions of BECs adiabatically loaded into optical lattices and
the reduction of the effective potential seen by the conden-
sates due to mean-field interactions. The latter was inferred
from measurements of Landau-Zener tunneling when the
lattice depth was further reduced and/or the acceleration
increased. We loaded the condensate into optical lattices
with different spatial periods, generating the periodic opti-
cal lattice either from two counterpropagating laser beams
or two laser beams enclosing an angle u different from
180 deg.

The properties of a Bose-Einstein condensate located
in a periodic optical lattice with depth U0 are described
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through the Gross-Pitaevskii equation valid for the single-
particle wave function [18]. In agreement with the Bloch
approach, the condensate excitation spectrum exhibits a
band structure, and in the presence of an acceleration
of the optical lattice Bloch oscillations of the conden-
sate should occur [4,6]. We present experimental evi-
dence for Bloch oscillations preserving the condensate
wave function. The nonlinear interaction of the conden-
sate may be described through a dimensionless parame-
ter [6,10,11] C � g�EB corresponding to the ratio of the
nonlinear interaction term g � 4pn0h̄2as�M and the lat-
tice Bloch energy EB � h̄2�2p�2�Md2. The parameter C
contains the peak condensate density n0, the s-wave scat-
tering length as, the atomic mass M, the lattice constant
d � p� sin�u�2�k, with k the laser wave number, and u

the angle between the two laser beams creating the 1D
optical lattice. From this it follows that a small angle u

should result in a large interaction term C. In fact, creat-
ing a lattice with u � 29 deg allowed us to realize a value
of C larger by a factor of more than 10 with respect to [15]
using a comparable condensate density. In the following,
the parameters d, EB, and C always refer to the respective
lattice geometries with angle u.

The role of the nonlinear interaction term of the Gross-
Pitaevskii equation may be described through an effective
potential in a noninteracting gas model [6,10]. In the per-
turbative regime of [6] the effective potential is

Ueff � U0��1 1 4C� , (1)

so that the potential seen by the condensate is U�x� �
Ueff sin�2px�d� 1 const. We therefore expect that for
large values of C, i.e., large mean-field effects, the ef-
fective optical lattice potential acting on the condensate
should be significantly reduced.

Our apparatus used to achieve Bose-Einstein conden-
sation of 87Rb is described in detail in [19]. Essentially,
5 3 107 atoms captured in a magneto-optical trap were
transferred into a triaxial time-orbiting potential (TOP)
trap [20]. Subsequently, the atoms were evaporatively
cooled down to the transition temperature for Bose-
Einstein condensation, and after further cooling we
© 2001 The American Physical Society 140402-1
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obtained condensates of �104 atoms without a discernible
thermal component in a magnetic trap with frequencies
around 15–30 Hz. In one set of experiments, the mag-
netic trap was then switched off and a horizontal 1D
optical lattice was switched on, while in the other case the
interaction between the condensate and the lattice took
place inside the magnetic trap, which was subsequently
switched off to allow time-of-flight imaging. The lattice
direction was parallel to the strong axis of the trap, and the
lattice beams were created by a 50 mW diode slave laser
injected by a grating-stabilized master-laser blue-detuned
by D � 28 35 GHz from the 87Rb resonance line. After
passage through an optical fiber, the laser light was split
and passed through two acousto-optic modulators (AOMs)
that were separately controlled by two phase-locked
RF function generators operating at frequencies around
80 MHz, with a frequency difference d. The first-order
output beams of the AOMs generated the optical lattice,
and an acceleration of the lattice was effected by applying
a linear ramp to d.

For the values of the detuning and laser intensity used
in our experiment, the spontaneous photon scattering rate
(�10 s21) was negligible during the interaction times of a
few milliseconds. In our experimental setup, we realized
a counterpropagating lattice geometry with u � 180 deg
and an angle geometry with u � 29 deg, leading to lattice
constants d of 0.39 and 1.56 mm, respectively [21]. Insert-
ing a peak condensate density of n0 � 1014 cm23 (typical
of trap frequencies .100 Hz) in the Thomas-Fermi limit
into the expression for the interaction parameter C leads
to C � 0.06 for the counterpropagating configuration and
C � 0.25 for u � 29 deg. In order to determine the lattice
depth at low condensate densities, we measured the Rabi
frequency on a first-order Bragg resonance [13]. Typically,
for well-aligned lattice beams we measured lattice depths
up to 20% lower than the theoretically expected value in-
ferred from the laser intensity and detuning. These discrep-
ancies are within the calibration error of our laser power
measurements.

In order to accelerate the condensate, we adiabatically
loaded it into the lattice by switching one of the lattice
beams on suddenly and ramping the intensity of the other
beam from 0 to its final value in 200 ms [22]. Thereafter,
the linear increase of the detuning d provided a constant
acceleration a �

l

2 sin�u�2�
dd

dt of the optical lattice, leading
to a final lattice velocity ylat � l

2 sin�u�2�df , where df is the
final detuning between the beams. After a few millisec-
onds of acceleration, the lattice beams were switched off
and the condensate was imaged after another 10–15 ms of
free fall. As the lattice can transfer momentum to the atoms
in the condensate only in units of the Bloch momentum
pB � h̄�2p�d�, the acceleration of the condensate showed
up as diffraction peaks corresponding to higher momen-
tum classes as time increased. Since for our magnetic trap
parameters the initial momentum spread of the conden-
sate (which is transferred into a spread of the lattice quasi-
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momentum during an adiabatic switch-on) was much less
than a recoil momentum of the optical lattice, the different
momentum classes jp � 6npB� (where n � 0, 1, 2, . . .)
occupied by the condensate wave function could be re-
solved directly after the time of flight [see, for instance,
the peaks corresponding to n � 0 and n � 1 in Fig. 1(a)].
As described in [23], the acceleration process within a peri-
odic potential can also be viewed as a succession of adia-
batic rapid passages between momentum states j6npB�.
We observed a momentum transfer of up to 6pB without a
detectable reduction of the phase-space density of the con-
densate. We verified that in the process of the acceleration
and tunneling, the condensed fraction was not reduced for
low condensate densities. Our investigation did not, how-
ever, test the evolution of the condensate phase, but on the
basis of the Bragg scattering experiments of [13] we as-
sume that the interaction times of our experiment should
not destroy the condensate phase.

The average velocity of the condensate was derived
from the occupation numbers of the different momentum
states. Figure 2 shows the results of the acceleration of a
condensate in the counterpropagating lattice with Ueff �
0.29EB and a � 9.81 m s22. In the rest frame of the
lattice [Fig. 2(b)], one clearly sees Bloch oscillations of
the condensate velocity corresponding to a Bloch-period
tB �

h
MRbad � 1.2 ms. The shape of these oscillations

agrees well with the theoretical curve calculated from the
lowest energy band of the lattice.

When the experiment was repeated in the angle configu-
ration of the lattice, larger values of the lattice depth in
units of the Bloch energy EB could be realized. Because

FIG. 1. Condensate acceleration in the counterpropagating op-
tical potential. Shown here are typical time-of-flight images for
moderate, n0 , 1014 cm23 , in (a) and high condensate density,
n0 . 2 3 1014 cm23, in (b). The two-peaked coherent structure
in (a) is easily interpretable within the periodic potential diffrac-
tion picture giving rise to two momentum classes, whereas the
more complicated pattern in (b) cannot be described by this
simple model.
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FIG. 2. Bloch oscillations of the condensate mean velocity ym
in an optical lattice. (a) Acceleration in the counterpropagating
lattice with d � 0.39 mm, U0 � 0.29EB, and a � 9.81 m s22.
Solid line: theory. (b) Bloch oscillations in the rest frame of the
lattice, along with the theoretical prediction (solid line) derived
from the shape of the lowest Bloch band. (c) Acceleration in a
lattice with d � 1.56 mm, U0 � 1.38EB, and a � 0.94 m s22.
In this case, the Bloch oscillations are much less pronounced.
Dashed and solid lines: theory for U0 � 1.38EB and Ueff �
0.88EB.

of the reduced Bloch velocity yB in this geometry, the
acceleration process was extremely sensitive to any initial
velocity of the condensate, which in our TOP trap is intrin-
sically given by the micromotion [20] at the frequency of
the bias field. For the trap parameters used in our experi-
ments, the velocity amplitude of the micromotion could
be of the same order of magnitude as yB and the con-
densates could, therefore, have quasimomenta close to the
edge of the Brillouin zone. In order to counteract this,
we performed the acceleration experiments inside the mag-
netic trap, eliminating the velocity of the condensate rela-
tive to the lattice by phase modulating one of the lattice
beams at the same frequency and in phase with the ro-
tating bias field of the TOP trap. In this way, in the
rest frame of the lattice the micromotion was compen-
sated. Nevertheless, a residual sloshing of the condensate
with amplitudes ,3 mm could not be ruled out, so that
the uncertainty in the initial velocity of the condensate
was still around 0.5 mm s21, corresponding to �0.15yB

in this geometry. Figure 2(c) shows the results of a mea-
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surement of the acceleration of the condensate as a func-
tion of the final lattice velocity for a theoretical lattice
depth of U0 � 1.38EB together with the theoretical curves
for the same potential and the (assumed) effective po-
tential Ueff � 0.65U0 � 0.88EB as calculated from the
condensate density using the perturbative expression of
Eq. (1). As expected from the band-structure calculations,
the Bloch oscillations are much less pronounced in this
geometry.

In order to measure more accurately the variation of
the effective potential Ueff with the interaction parameter
C, we studied Landau-Zener tunneling out of the lowest
Bloch band for small lattice depths in both geometries. To
this end, the acceleration of the lattice was increased in
such a way that when the condensate crossed the edge of
the Brillouin zone, an appreciable fraction of the atoms
tunneled across the band gap into the first excited band
(and, therefore, effectively to the continuum, as the gaps
between higher bands are negligible for the shallow poten-
tials used here). According to Landau-Zener theory, this
fraction is [23]

r � exp

µ
2

pU2
eff

8h̄pBa

∂
, (2)

giving a velocity ym � �1 2 r�yB of the condensate at the
end of the acceleration process for a final velocity yB of
the lattice [24]. We verified that this formula correctly de-
scribed the tunneling of the condensate in our experiment
by varying both the potential depth and acceleration.

Thereafter, we studied the variation of the final mean
velocity ym as a function of the condensate density for the
two lattice geometries. The density was varied by changing
the mean frequency of the magnetic trap (from �25 Hz to
�100 Hz). From the mean velocity the effective potential
was then calculated using the Landau-Zener formula given
above. Figure 3 shows the ratio Ueff�U0 as a function of
the peak density n0 for the counterpropagating geometry
and the angle geometry. As expected, the reduction of the
effective potential is much larger in the angle geometry.
The theoretical predictions of Eq. (1) are also shown in
the figure, with the potential U0 calculated taking into ac-
count losses at the cell windows and imperfections of the
polarizations of the lattice beams. The residual combined
error due to uncertainties in the absolute intensity measure-
ments, the position of the beam axes relative to the posi-
tion of the BEC, and a small initial velocity due to sloshing
of the BEC in the magnetic trap, as well as a systematic
error due to the difference in position of about 300 mm
of the condensate between the weakest and the strongest
trap used, was estimated at about 20%. Within these ex-
perimental uncertainties, qualitative agreement with theory
was good [25]. Although we could realize peak densities
up to 4 3 1014 cm23 by using larger trap frequencies, data
points for n0 . 1014 cm23 in the counterpropagating lat-
tice and n0 . 5 3 1013 cm23 in the angle geometry were
140402-3
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FIG. 3. Dependence of the effective potential Ueff on the peak
density n0 for the two lattice geometries. The experimental re-
sults for the counterpropagating (triangles) and angle geometries
(squares) are plotted together with the theoretical predictions
(solid and dashed lines, respectively). Parameters in these ex-
periments were a � 23.4 m s22 and U0 � 0.28EB for the coun-
terpropagating lattice and a � 3.23 m s22 and U0 � 0.71EB for
the angle geometry.

not included in the graph as the resulting diffraction pat-
terns were not easily interpretable within the simple model
described above [see Fig. 1(b)].

In summary, we have investigated the coherent accelera-
tion and Bloch oscillations of Bose-Einstein condensates
adiabatically loaded into a 1D optical lattice. Through
Landau-Zener tunneling out of the lowest Bloch band, we
have studied the dependence of the effective potential on
the interaction parameter C. The results obtained are in
good qualitative agreement with the available theories and
extend the experimental work on ultracold atoms in opti-
cal lattices into the domain of Bose-Einstein condensates.
In order to improve the theoretical description of our ex-
periment, the finite extent of the condensate leading to
the occupation of only a few lattice sites and the three-
dimensional nature of the condensate evolution as well as
the role of the interaction term in the adiabaticity crite-
rion for switching on the lattice will have to be taken into
account.
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