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Bundles of polar filaments which interact via active elements can exhibit complex dynamic behaviors.
By using a simple and general description for the bundle dynamics, we find regimes for which density
profiles propagate as solitary waves with a characteristic velocity along the bundle. These behaviors
emerge from an interplay of local contractions in the bundle and relative sliding of oppositely oriented
filaments. By introducing filament binding to and detachment from a substrate, the system is able to
generate net motion as a self-organization phenomenon.
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Many eucariotic cells are motile and can crawl along
solid substrates [1]. In these cells, the forces necessary for
locomotion are generated by the cytoskeleton, a dynamic
ensemble of proteins which consists mostly of actin fila-
ments and microtubules. These filaments are elastic rod-
like structures of polymerized actin and tubulin monomers,
respectively. Various other cytoskeletal proteins control
the filament lengths, their spatial organization, and their
dynamics [2]. The mechanical forces generated by the cy-
toskeleton are mainly due to polymerization at filament
tips and to the action of motor proteins such as myosins
and kinesins, which are able to advance along filaments
by transducing the chemical energy of ATP [2–4]. During
cell locomotion, the actin cortex, which is the part of the
cytoskeleton localized beneath the cell membrane, plays a
key role. It has been found that fragments of fish epidermal
keratocytes which lack the cell nucleus and the microtubule
network are fully motile and may advance on a substrate
[5]. Remarkably, under constant external conditions, these
fragments exist in a nonmoving symmetric state as well as
in a motile asymmetric state [6]. The nonmoving state is
stable, but it can be transformed into the motile state by a
sufficiently strong deformation of the cell fragment using
micromanipulation techniques. This observation suggests
that cell motility mediated by the actin cytoskeleton is a
self-organization phenomenon which is not regulated by a
central unit such as, e.g., the nucleus.

In order to characterize basic mechanisms which are in-
volved in the dynamic reorganization of the cytoskeleton
in a living cell, in vitro experiments have been performed
where the behavior of filaments in the presence of small
aggregates of molecular motors is studied [7–9]. Fila-
ments have two structurally different ends, denoted “plus”
and “minus” and are thus polar constructs. A motor pro-
tein always moves along a filament towards the same end.
Hence, aggregates of motors can induce relative displace-
ments of two filaments when they simultaneously interact
with both. In the presence of a large number of motor ag-
gregates and filaments, this gives rise to interesting self-
organization phenomena. Notably, contraction of filament
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bundles [7] and the formation of asters [8] have been re-
ported. The dynamic behavior of polar filaments which
interact with motor aggregates has also been studied theo-
retically [10–12]. In particular, it was shown that filament
bundles have the ability to contract and to generate tension
by a generic physical mechanism [12].

Of particular interest is the question whether self-
organization of motors and filaments alone can lead to fila-
ment patterns which propagate along the system and are
accompanied by a net motion of filaments. In this Letter
we show theoretically that active systems of interacting
filaments can generate solitary waves, i.e., patterns of fila-
ment distributions which propagate with constant velocity
along a filament bundle. The basic mechanism leading to
propagating patterns can already be discussed within the
framework of Ref. [12]. There, solitary waves result from
an interplay of local contractions in the bundle induced
by filaments of one orientation and the relative sliding of
the two populations of oppositely oriented filaments. In
order to obtain real locomotion as a self-organization phe-
nomenon, we generalize our description and include the
possibility of attachment and detachment of filaments to
and from a substrate.

Consider a bundle of polar filaments, all aligned along
the x axis. The bundle is characterized by the distributions
of two filament populations: the densities c1�x� and c2�x�
of filaments oriented with their plus end to the right and to
the left, respectively. The time evolution of the densities
of the two filament populations can be expressed as

≠tc
1 � D≠2

xc1 2 ≠xJ1, (1)

≠tc
2 � D≠2

xc2 2 ≠xJ2, (2)

where D is an effective diffusion coefficient. The active
currents J6 are generated by the action of molecular mo-
tors, which provide mobile cross-links between filaments
in the bundle. In general, a given filament actively slides
in a direction which is determined by its polarity and the
polarity of the filaments with which it interacts. If we as-
sume that two-filament interactions dominate, which is the
© 2001 The American Physical Society 138101-1



VOLUME 87, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 24 SEPTEMBER 2001
case for low motor densities or low motor processivity, the
currents can be written as J6 � J66 1 J67, with

J66�x� � a
Z �

0
dj �c6�x 1 j� 2 c6�x 2 j��c6�x� ,

(3)

J67�x� � 7b
Z �

2�
dj c7�x 1 j�c6�x� , (4)

where the average velocities a and b characterize the
interaction strength of parallel and antiparallel filaments,
respectively. In the following we will use rather the di-
mensionless parameters ā � a�2�c1

0 1 c2
0 ��D and b̄ �

b��D, where c6
0 � 1

L

RL
0 dx c6�x� are the average fila-

ment densities and L is the system size. The expressions
given for the currents capture the symmetries of filament
interactions. In particular, the dynamical Eqs. (1)–(4) con-
serve momentum, i.e., the integral over the total current
I �

RL
0 dx J, with J � J11 1 J12 1 J21 1 J22, van-

ishes. Homogeneous filament distributions c6�x� � c6
0

are stationary states of the system. They are linearly stable
for ā , āc, where āc $ 0 is a critical value. For b̄ � 0,
the distributions c1 and c2 are uncoupled. Depending on
the parameters, a given initial distribution may in this case
either relax to the homogeneous state or contract to a lo-
calized state.

For nonzero b̄, the coupling of the two filament popu-
lations via (4) leads to oppositely directed filament cur-
rents which can give rise to oscillating and self-propagating
filament patterns. Consider, for example, a system of size
L with periodic boundary conditions (a contractile ring).
For b̄ fi 0 we find numerically, within an interval ād ,

ā , ā1
c , limit cycles for which both filament distributions

are nonhomogeneous and propagate in the same direction
with the same velocity. These self-propagating patterns are
solitary waves which can be expressed as

c6�x, t� � u6�x 2 yt� , (5)

where u6�x� is a time-independent filament profile.
Numerically obtained solitary waves consist of one well-
localized distribution u6 of filaments pointing in one
direction, while the distribution of filaments of opposite
orientation u7 is comparatively broad (see Fig. 1). Both
distributions u6 have one maximum, with the maximum
corresponding to the localized distribution moving in front.
Solitary waves exist for both equal and unequal numbers
of filaments of the two orientations. For the special case
of an equal number of filaments pointing in each direction,
i.e., c1

0 � c2
0 , the solitary wave is a state of broken sym-

metry between plus and minus filaments. Consequently,
two different solitary waves which move in opposite direc-
tions exist. This coexistence of two stable self-propagating
solutions which move in opposite directions can also occur
in the asymmetric case. In the inset of Fig. 1 the velocity
y of the propagation of solitary waves is presented for two
different values of ā as a function of b̄. For small b̄ the
velocity depends linearly on b̄. For large b̄ the velocity
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FIG. 1. Time evolution of the total density of filaments c̄ �
�c1 1 c2�� for ā � 2 and b̄ � 0.1 as a function of x̄ � x��
and t̄ � tD��2 (numerical solution with spatial resolution Dx̄ �
0.05 and temporal resolution Dt̄ � 6.25 3 1024). The system
is of size L � 10� with periodic boundary conditions, c1

0 � � 3
and c2

0 � � 7. The distribution is moving with constant velocity
to the right with most of the minus filaments at the leading edge.
The inset shows the velocity ȳ � y��D of self-propagating
solutions as a function of b̄c̄0 with c̄0 � �c1

0 1 c2
0 �� for ā �

1.2 (triangles) and ā � 2 (diamonds), and all other parameters
as above. The solid line is given by ȳ � 2b̄�c1

0 as obtained
by the perturbation analysis; see text. All propagating solutions
have been obtained from the same initial conditions.

saturates at a value which depends on ā. However, for
b̄ � 0 the slope ≠y�≠b̄ is independent of ā and L. The
propagation of a pattern implies the existence of a local
current J. Note, however, that, because of momentum
conservation of Eqs. (1)–(4), the integrated current I
vanishes.

For b̄ ø 1, solitary waves can be understood as emerg-
ing from a contracted distribution u2

0 �x� that is stable at
b̄ � 0 which is set in motion by interacting with the ho-
mogeneous distribution u1

0 �x� � c1
0 which is also stable

for b̄ � 0. The deformations of the filament distributions
as well as the propagation velocity can be expanded in b̄:

u6�x� � u6
0 �x� 1 u6

1 �x�b̄ 1 u6
2 b̄2 1 . . . , (6)

y � y1b̄ 1 y3b̄3 1 . . . . (7)

Here, all even terms vanish by symmetry in the expansion
of y. Indeed, if u6�x 2 yt� is a solution for a given value
of b, then u6�2x 1 yt� corresponds to 2b, thus y�b� �
2y�2b�. We obtain a solitary wave solution by assuming
that u2

0 is localized while u1
0 � c1

0 is homogeneous [13].
In first order in b̄, the corrections to the filament densities
are then given by u2

1 �x� � 0, u1
1,0 � 0, and

u1
1,k �

2Di sink�c1
0 u2

0,k

D�k2 1 2a��cosk� 2 1�c1
0

, (8)

for k � 2pn�L fi 0, where u1
1 �x� �

P
k u1

1,keikx and
u2

0 �x� �
P

k u2
0,keikx. For the velocity we obtain y1 �

2Dc1
0 , thus y � 2b�c1

0 1 O�b3�. A comparison of
this result to first order in b̄ with a numerically obtained
138101-2
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solution is shown in Fig. 2 which displays the distributions
u1�x� and u2�x� of plus and minus filaments of a solitary
wave with an equal number of filaments of both orienta-
tions. Superimposed are the distributions u6

0 1 b̄u6
1 .

Solitary waves can be obtained via a dynamic instabil-
ity from a state where the filament distributions of both
orientations are homogeneous. This instability can be
induced by increasing the value of ā for fixed b̄. This
is shown in Fig. 3 which displays the amplitude jc1

1 j 1

jc2
1 j of the first spatial Fourier component c6

1 �t� �
1
L

RL
0 dx c6�x, t�e2pix�L of the filament distributions as

a function of ā. The homogeneous state with jc1
1 j 1

jc2
1 j � 0 is linearly stable for ā , āc. Propagating

solutions with time-independent jc1
1 j 1 jc2

1 j fi 0 exist
for ā . ād. The bifurcation at ā � āc that leads to
solitary waves is subcritical and both states coexist within
the interval ād , ā , āc [14]. If ā is increased further,
a subsequent bifurcation occurs at which the solitary wave
becomes unstable with respect to a second frequency. In
Fig. 3 this type of solution is represented by triangles. We
can estimate the propagation velocity expected in a bundle
of actin filaments. The parameters chosen for Fig. 1
correspond, e.g., to the values a � 0.1 mm s21, b �
1 mm s21, D � 0.5 mm2 s21, � � 1 mm, c1

0 � 3 mm21,
and c2

0 � 7 mm21. For these parameters the system self-
organizes into a solitary wave with y � 0.05 mm s21.

The solitary waves discussed so far represent the most
simple example for traveling patterns in actively interact-
ing filament systems. Because of momentum conservation
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FIG. 2. Comparison of a numerically obtained solitary wave
with the results of the perturbation calculation. The diamonds
represent the distributions ū1 � u1� of plus (upper frame) and
ū2 � u2� of minus filaments (lower frame) of a solitary wave
moving to the left for ā � 1.7, b̄ � 0.001, c6

0 � � 5. The solid
lines show the perturbative solution in first order in b̄.
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in this system, there is, however, no net filament current
generated. We can generalize our discription and allow
for momentum exchange with a substrate by introducing
filament adhesion. We denote attachment and detachment
rates of filaments to the substrate by va and vd , respec-
tively, and introduce the densities a1�x� and a2�x� of ad-
hering and thus immobile filaments of both orientations,
which satisfy the equation

≠ta
6�x� � vac6�x� 2 vda6�x� . (9)

In the presence of adhering filaments, Eqs. (1) and (2)
governing the dynamics of the free filament densities c1

and c2 have to be modified:

≠tc
6 � D≠2

xc6 2 ≠xJ6 2 ≠xJ6
adh 2 vac6 1 vda6.

(10)

Equation (10) takes into account the currents induced by
adhering filaments which are given by

J66
adh �x� � a

Z �

0
dj �a6�x 1 j� 2 a6�x 2 j��c6�x� ,

(11)

J67
adh �x� � 7b

Z �

2�
dj a7�x 1 j�c6�x� . (12)

These expressions are consistent with Eqs. (3) and (4).
Also, in the system (9)–(12), the homogeneous state is
unstable for a . a0

c, where the critical value a0
c is positive

and depends on va and vd.
For b fi 0, this instability leads to solitary wave so-

lutions which, as a result of adhesion, are accompanied
by a nonvanishing net filament current I �

RL
0 dx �J1

adh 1

J2
adh�, i.e., the system is self-propelling (see Fig. 4). Note

that this net current is a direct consequence of the solitary
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FIG. 3. The time averaged sum of the amplitudes of the first
spatial Fourier components c̄6

1 � c6
1 � of the filament distribu-

tions as a function of ā for b̄ � 0.01 and all other parameters
as in Fig. 1. The homogeneous solution is represented by dia-
monds, solitary waves by squares, and propagating oscillatory
solutions by triangles. The solid line represents the solitary
waves obtained by the perturbation calculation in first order in
b̄. The inset shows the distribution of the solitary wave for
ā � 1.5 moving in the direction indicated by the arrow.
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FIG. 4. The absolute value of the integrated filament current
jIj due to adhering filaments as a function of b̄C̄0 for va � 0.2,
vd � 1, �c1

0 1 a1
0 ���c2

0 1 a2
0 � � 3�7, ā � 1.2 (triangles),

and ā � 2 (diamonds), and all other parameters as in Fig. 1.
Here, C̄0 � �c1

0 1 a1
0 1 c2

0 1 a2
0 ��� is the total number of

filaments. Note that the sign of I is opposite to the sign of the
velocity y.

wave. It vanishes in the homogeneous state according to
Eqs. (9)–(12).

A symmetric system is a particular situation with c1
0 �

c2
0 which generates at the instability self-propelling states

via spontaneous symmetry breaking. It is interesting to
note that this is phenomenologically reminiscent of the be-
havior observed for fish epidermal keratocyte fragments
which exist in a symmetric nonmoving state and are able
to move after the symmetry is broken by external manipu-
lation. Our analysis shows that this type of behavior and
the appearance of propagating filament patterns in general
could already be found in simpler systems. In particular,
these phenomena could be studied in vitro in experiments
on actin filaments and myosin motors that interact with a
substrate or the lipid bilayer membrane of a vesicle. Fur-
thermore, contractile rings provide examples of active fila-
ment bundles within cells whose geometry corresponds to
periodic boundary conditions and which could thus exhibit
the dynamic patterns discussed here.

In this Letter we have presented the most simple ex-
amples of filament systems that exhibit propagating pat-
terns and filament motion via self-organization of filaments
and active elements. These behaviors can be expected to
be generic, since the dynamic equations from which they
follow are based on general symmetry arguments, which
are independent of the details of the microscopic mecha-
138101-4
nisms. Indeed, the dynamic patterns described above also
occur in generalizations of our description [15]. For ex-
ample, we have numerically found propagating patterns
when also incorporating the dynamic evolution of the den-
sity of active elements. Even though our description is very
simplified, we expect that the basic physical mechanisms
described here play a fundamental role in the dynamic or-
ganization of the cytoskeleton in living cells and during cell
locomotion.
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