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A general scenario that leads to Coulomb quantum criticality with the dynamical critical exponent
z � 1 is proposed. I point out that the long-range Coulomb interaction and quenched disorder have
competing effects on z, and that balance between the two may lead to charged quantum critical points at
which z � 1 exactly. This is illustrated with the calculation for the Josephson junction array Hamiltonian
in dimensions D � 3 2 e. Precisely in D � 3, however, the above simple result breaks down, and
z . 1. Relation to other studies is discussed.
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The crucial difference between the quantum (T � 0)
and the more familiar finite temperature phase transitions
is that while dynamics is irrelevant for the latter, it is es-
sential for the former [1]. The link between statics and dy-
namics at a continuous quantum phase transition is usually
parametrized with the value of dynamical critical exponent
z that describes relative scaling of the time and the length
scales in the problem [2,3]. Together with the correlation
length exponent n, z enters the low-temperature scaling of
all physical observables, since in the vicinity of a quantum
critical point temperature scales as T � jdjzn , where d

is the T � 0 tuning parameter. The value of z for a given
quantum critical point is therefore of great interest, and has
often been used to distinguish one universality class from
another. In their seminal paper on universal conductivity
in two dimensions, Fisher, Grinstein, and Girvin [4] also
proposed that when the long-range Coulomb interaction is
present, at the criticality energy should scale as the inverse
of length, so that z � 1 should result. This well-known
conjecture has since been used in interpreting some of the
most intriguing experiments in modern condensed matter
physics, ranging from superconductor-insulator transitions
in low-dimensional systems [5], via metal-insulator tran-
sitions in Si-metal-oxide-semiconductor field-effect tran-
sistors [6], to the universality of the underdoped high- Tc
cuprates [7]. It has also been utilized in the Monte Carlo
simulations where knowing z in advance greatly simplifies
the inevitable finite-size scaling analysis [8].

The purpose of this Letter is to provide the theoretical
justification for this widely used relation and point to its
limitations. I show that in certain dimensions the Coulomb
coupling constant (i.e., charge) is protected from re-
normalization, and consequently its flow under scaling
transformation is directly proportional to its canonical
dimension, which is just z 2 1 [4] [see Eq. (2)]. This
implies that if a charged critical point exists in the theory,
its location is actually determined by the solution of the
equation z � 1, which then also determines the value of
the dynamical critical exponent exactly. I argue that this
situation arises when there is an additional coupling in
the theory with the competing effect on the dynamical
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exponent, and which can balance the effect of Coulomb
interaction. Such a coupling is shown to be provided by
quenched disorder, and a concrete realization of the above
scenario is worked out on the example of a disordered
Josephson junction array Hamiltonian in D � 3 2 e

dimensions. Finally, the simple relation z � 1 is found
to break down at special dimensions at which the above
renormalization group (RG) protectorate on charge is
lifted. Relation to other recent theoretical studies of
Coulomb criticality is discussed.

To be specific, I will focus on the theory originally con-
sidered in [9] which describes an array of coupled Joseph-
son junctions, but it will transpire that the underlying
physics is more general. Building on an earlier work by Ma
[10], Fisher and Grinstein [9] have shown that Coulomb
interaction can be represented by a minimal coupling to
the soft scalar gauge field. In the long wavelength limit
the critical field theory that describes the system of bosons
interacting via Coulomb interaction at T � 0 and in D
dimensions takes the form [9]

S �
Z

dD �r dt

Ω
j�≠t 2 iA0�Cj2 1 j=Cj2

1 �V ��r , t� 1 m2� jCj2 1 ljCj4

1
1
2e

A0j=j
D21A0

æ
, (1)

where by j=jD21 it is meant j �kjD21 in the Fourier space.
C��r, t� is the complex superfluid order parameter, and
A0��r , t� is the scalar gauge field, which when integrated
out introduces the Coulomb interaction into the remain-
ing action for C. I have also included a random po-
tential V ��r, t�, but more on this in a moment. More
generally, the gauge-field propagator in the momentum
space is �e2�Vc�k� 2 1�� [9], which for the Coulomb inter-
action Vc� �r� � 1�r then yields the last term in (1) at small
momenta. The presence of a neutralizing background is
included by omitting the k � 0 components of the gauge
field [10].

The above action without randomness �V � �x, t� 	 0�
was first studied by Fisher and Grinstein [9], and recently
© 2001 The American Physical Society 137004-1
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revisited by Ye [11]. In D � 3 both the charge (e2) and
the quartic interaction (l) are marginally irrelevant, and
the Coulomb interaction causes the flow to run away to
negative l, which may be interpreted as a sign of a dis-
continuous transition. In D � 3 2 e the result is more
interesting: charge is irrelevant at the XY critical point, but
if too large may still lead to a runaway flow. Irrelevance
of the charge in the theory (1) arises in a somewhat non-
trivial way, and it will prove instructive to understand this
in some detail. In D , 3 the inverse gauge-field propa-
gator in (1) is nonanalytic in k and therefore e2 cannot
get renormalized by the integration over the high-energy
modes. This RG protectorate is reminiscent of the situ-
ation in the (2 1 1)-dimensional electrodynamics with the
Chern Simons term [12], where the statistical angle is ex-
actly marginal for a similar reason. Here this means that
the b function for the charge is determined exclusively by
its canonical dimension. Gauge invariance and the accom-
panying Ward identity imply that A0 � t21, so assuming
t � Lz yields to

de2

d ln�b�
� e2�z 2 1� (2)

in D , 3, where b is the standard RG parameter. The
exponent z in the last equation then needs to be deter-
mined from the renormalization of the C propagator. The
simplest one-loop calculation [see the first diagram on
Fig. 1(a)] in D � 3 2 e then gives z � 1 2 e2�3, and
thus smaller than one. By Eq. (2) the small charge is then
irrelevant. Two features of this result that are likely to

++ + (a)

++ +

+ + +
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+ + + (c)
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FIG. 1. One-loop contributions to the renormalization of self-
energy, quartic interaction, disorder coupling, and polarization.
Wavy lines represent the gauge-field propagator, and dashed
lines the disorder vertex.
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be quite general should be noticed: first, z fi 1 since the
scalar gauge field couples only to the time derivative, and
thus discriminates between space and time. Second, the
negative sign in Eq. (2) comes from the tendency of the
gauge field to soften the C propagator. It is analogous to
the well-known (and much debated) result that the anoma-
lous dimension in the scalar (Higgs) electrodynamics is
negative [13–15]. It could therefore be expected that when
higher order terms in e2 are included z , 1 will remain,
and that irrelevancy of the charge in the pure theory (1) is
more general than the simple one-loop calculation would
suggest.

Equation (2) also implies that if there would exist a
critical point in the theory with nonzero charge, in D , 3
at that fixed point z � 1 exactly. This nonperturbative
result parallels another exact result hA � 1 in the D � 3
scalar electrodynamics [13,16] where hA is the anomalous
dimension of the vector gauge field. The crucial question is
how can such a Coulomb critical point (with e2 fi 0) arise.
A clue is provided already in the preceding discussion: one
needs another coupling which will tend to increase z and
balance the effect of Coulomb interaction in Eq. (2). A
physically realistic candidate is disorder: in the quantum
theory the random potential V ��r, t� is random in space but
static and independent of imaginary time. This anisotropy
will in general lead to a nontrivial z, and it is well known
that the effect to the lowest order is always to increase it
[17]. In other words, while the weak Coulomb interaction
is marginally irrelevant at the XY critical point, I expect it
to become relevant at the disordered critical point where
z . 1. The small charge near the random critical point
should grow until it balances disorder in Eq. (2). As a
result, a new stable (Coulomb) critical point may arise, at
which z � 1 exactly.

Next I demonstrate that the above scenario is indeed
born out in the one-loop calculation in the theory (1),
in passing reconciling the apparently different results in
Refs. [9] and [11]. I then proceed to show how the equal-
ity z � 1 is violated in D � 3, and comment on relations
to other works.

To exert some control over the fixed points in the the-
ory I will assume both a small e � 3 2 D and et , where
the latter is the number of dimensions over which disorder
is correlated [18]. The physically interesting case corre-
sponds to et � 1, but since I am primarily interested in the
point of principle, convergence properties of the double-e
expansion will not be of much concern here [19]. To aver-
age over disorder I utilize the standard replica trick, which
attaches a replica index a � 1, . . . , N onto all fields in the
action (1) and introduces another interactionlike term in
the theory

2
W
2

NX
a,b�1

Z
dD11 �R dD11 �R0 dD112et � �R 2 �R0�

3 jCa� �R�j2jCb� �R0�j2, (3)
137004-2



VOLUME 87, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 24 SEPTEMBER 2001
where the limit N ! 0 is to be taken at the end of the
calculation [18]. Here �R � � �r, t�, and for et � 1 one
recovers the quantum problem where disorder is uncor-
related (Gaussian) in space and independent of the imagi-
nary time.

To perform the Wilson-Fisher momentum shell renor-
malization group one integrates out all the fields with
L�b , k , L and 2` , v , `, where L is the
ultraviolet cutoff. The effect of this procedure is to alter
the coefficients in front of v2 �Zv�, k2 �Zk�, m2 �Zm�,
l �Zl�, W �ZW �, and A2

0-term �ZA� in the Fourier trans-
formed action (1) [20]. One then rescales the momenta
and the frequencies as bk ! k and bzv ! v, and the
fields as b2DA0 ! A0 and b2�21D1z��2Z

1�2
k C ! C, to

find finally that by defining new coupling constants as
l�b� � b42D2zZ22

k Zll, W �b� � b42D2z1et Z22
k ZWW ,

and e2�b� � bz21Z21
A e2 the action can be restored into its

original form (at the critical point m2 � 0�. Computing
next the Z factors diagrammatically to one-loop order
(Fig. 1) gives at the criticality

de2

d ln�b�
� e2�z 2 1� 2 d3,D

1
12

e4, (4)

dl

d ln�b�
�

µ
e 1

1
2

e2 1
11
8

W

∂
l 2

5
2

l2 2
1
4

e4,

(5)

dW

d ln�b�
�

µ
e 1 et 2 2l 1

1
2

e2

∂
W 1

7
8

W2. (6)

The exponent z in Eq. (4) is determined by demanding that
b22zZv � b22Zk, which gives

z � 1 1
1
8 W 2

1
3 e2. (7)

Note that for D , 3 the flow equation for the charge re-
duces to Eq. (2). Precisely in D � 3 the inverse propaga-
tor for the gauge field becomes analytic, �k2. This means
that in D � 3 the charge becomes renormalized by the po-
larization diagrams in Fig. 1(d), which contribute the last
term in Eq. (4). For W � 0 the preceding b functions re-
duce to those of Ref. [9] when D , 3, and coincide with
those of [11] right at D � 3, upon simple redefinitions of
couplings. They are also equivalent to those of [19] for
e2 � 0. It may be interesting to note that many of the in-
dividual diagrams on Fig. 1 are ultraviolet divergent, due
to the independence of the gauge-field propagator on fre-
quency. All those divergences exactly cancel out in the
final result [11]. Finally, the flow of the mass term in (1)
yields the correlation length exponent:

n �
1
2

1
1
4

µ
l 1

e2

6
2

W
4

∂
. (8)

Let us turn now to the fixed points of the above equa-
tions. Besides the Gaussian and the XY fixed points
at W � e2 � 0, both unstable with respect to disorder,
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there are two disordered fixed points. First, at e2 � 0,
there is a neutral disordered fixed point [18] at ln �
2�4e 1 11et��9 and Wn � 8�e 1 5et��9, which is at-
tractive in the l 2 W plane. At the neutral fixed point
zn � 1 1 W�8 . 1, so a weak Coulomb interaction is a
relevant perturbation. With a small charge turned on, the
flow is towards a new, stable, Coulomb critical point. In
D , 3 this fixed point is located at

lc �
100
183

e

Ω
1 1

389et

100e

1

sµ
1 1

389et

100e

∂2

1
1647
5000

µ
1 1

et

e

∂2æ
,

(9)

Wc � 16
17 �2lc 2 e 2 et� , (10)

and

e2
c � 3

8 Wc , (11)

where the last equation ensures that z � 1. The reader
should note that disorder is necessary for the existence of
the Coulomb critical point: without it the critical point
would turn imaginary, and one would find only the stan-
dard runaway flow characteristic of the gauge-field fluctua-
tions in the e expansion [21]. The Coulomb critical point
therefore may be considered as an example of a disorder
induced continuous phase transition.

Precisely in D � 3 the last term in Eq. (4) becomes
finite. There still exists a stable Coulomb critical
point at lc � 3.61et, Wc � 40�2lc 2 et��41, and
e2

c � 3Wc�10, but with the dynamical critical exponent

z � 1 1
e2

c

12
, (12)

which gives z 
 1.15, for example, for et � 1. One finds
z fi 1 in D � 3 as a result of the removal of the RG pro-
tectorate on charge. The same violation of the simple re-
lation z � 1 can be expected in other problems in special
dimensions. Also, since at the criticality Vc�r� � 1�rz ,
one expects that z $ 1 in general [4], since screening
should certainly not make the interaction longer ranged.
The result (12) thus implies the Coulomb interaction has
been partially screened at the criticality in D � 3, and now
decays faster (but still as a power law) with distance [22].

The result z � 1 was previously also found in the large-
N theory of Dirac fermions in D � 2 [23], interacting both
via Coulomb interaction and with the Chern Simons field.
This theory may be relevant to the quantum Hall state-
insulator transition [2,24]. It was found that for a certain
range of the statistical angle (Chern Simons coupling) the
competition between the Chern Simons and the Coulomb
interactions leads to a nontrivial charged fixed point, at
which z � 1 exactly, just as in Eq. (2). The physical rea-
son why the two interactions have competing effects on
z only for some values of the Chern Simons coupling
137004-3



VOLUME 87, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 24 SEPTEMBER 2001
remained somewhat obscure in this work. Nevertheless,
the result in [23] bears a formal resemblance to mine.

Finally, z � 1 was also found in the previous work by
the author on the quantum critical behavior of dirty bosons
with Coulomb interaction in D � 1 1 e dimensions [25].
There it arises as a consequence of a special symmetry
the theory dual to (1) possesses precisely in D � 1, and
can therefore be suspected to be an artifact of the specific
RG scheme that was employed. This Letter can thus be
understood as complementing the previous work in that it
shows that z � 1 is also exact near the D � 3, and it may
therefore be expected to hold in the physical case D � 2.

It may also be interesting to note that simply setting
e � et � 1 in the one-loop Eqs. (7) and (8), to crudely
estimate the exponents in D � 2, besides the exact z � 1
also yields n � 1.46 at the Coulomb criticality. Experi-
mentally, n 
 1 [5], and the result for n is less reliable
than the one obtained in the expansion around D � 1 [25].

To summarize, it was shown that the competition be-
tween the correlated (quantum) disorder and Coulomb in-
teraction may lead to a new charged critical point at which
the dynamical critical exponent z � 1 exactly. This simple
result breaks down in special dimensions, and an example
of the Josephson junction array when this happens in D �
3 was provided. I argued that similar results should be ex-
pected whenever there are two couplings in the theory with
competing effects on z.
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