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We show that a model of interacting electrons in one dimension is able to explain the order of magni-
tude as well as the temperature dependence of the critical supercurrents recently measured in nanotube
samples placed between superconducting contacts. We use bosonization methods to deal with the long-
range Coulomb interaction, ending up with a picture in which the critical current does not follow the
temperature dependence of the gap in the contacts. Our results also reveal the presence of a short-range
attractive interaction in the nanotubes, which accounts for a significant enhancement of the critical
supercurrents.

DOI: 10.1103/PhysRevLett.87.136401 PACS numbers: 71.10.Pm, 71.20.Tx, 74.50.+r
Since their discovery, carbon nanotubes have offered a
great potential for novel electronic properties and techno-
logical applications. The theoretical prediction that there
should be semiconducting as well as metallic nanotubes
[1] has been checked experimentally [2]. Also remarkable
has been the experimental observation of unconventional
transport properties [3], that seem to be compatible with
the expected Luttinger liquid behavior of one-dimensional
electron systems [4]. Different approaches have predicted
the appearance of phases with broken symmetry in the car-
bon nanotubes at very low energies [5–8]. Anyhow, the
estimates are in general that there should be enough mar-
gin to observe the characteristic scaling behavior of the
Luttinger liquid over a wide range of temperatures.

A different class of experiments has been aimed to test
the superconducting properties of the carbon nanotubes
[9,10]. One of the most striking results has been the ob-
servation of supercurrents along carbon nanotubes placed
between superconducting contacts [9]. In a sample made
of a single-walled nanotube, for instance, critical supercur-
rents have been measured that are about 40 times higher
than expected from the value of the gap in the contacts [9].
They also show a very flat dependence with temperature,
until the critical value of the superconducting contacts is
approached. In that respect, there is a marked difference
from the behavior of another sample made of a rope of
nanotubes, where the critical supercurrent seems to follow
the BCS gap in a certain range of low temperature [9].

A model of the electron interaction in the carbon nano-
tubes should give a quantitative account of all these differ-
ent observations of superconducting correlations. We show
in this Letter that the mentioned features of the critical su-
percurrent can be understood in the framework of a one-
dimensional theory of interacting electrons. We will see
that the experimental data are consistent with a definite
form of the one-dimensional interaction, as it is actually
nontrivial to reproduce both the shape and the order of
magnitude of the supercurrents in the single-walled nano-
tube and in the rope of nanotubes. In particular, the ex-
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perimental values of the supercurrent point to a sensible
renormalization of the strength of the long-range Coulomb
interaction, especially in the sample made of a rope of
nanotubes, in agreement with earlier theoretical predic-
tions [11,12].

A metallic single-walled nanotube has several one-
dimensional subbands, with two pairs of linear branches
crossing at Fermi points kF and 2kF. We deal in this
Letter with an effective description of the nanotubes for
energies below the scale Ec at which all the gapped sub-
bands decouple in the computation of low-energy prop-
erties, so that the relevant modes left belong to the linear
branches close to the Fermi level. We can estimate this
energy Ec as a few tenths of eV, for a typical single-walled
nanotube with about 10 subbands.

The low-energy excitations can be encoded into four
boson fields, each boson corresponding to a linear branch
in the same fashion as in the Luttinger model [4]. The
Hamiltonian of the effective theory can be written in terms
of the respective density operators rias, labeled by the
Fermi point a � 1, 2 and by the chirality i � L, R,

H �
1
2

yF

Z kc

2kc

dk
X
ias

:rias�k�rias�2k�:

1
1
2

Z kc

2kc

dk
X
ias

rias�k�V �k�
X
jbs0

rjbs 0�2k� . (1)

In the above expression, kc is related to Ec through the
Fermi velocity yF , kc � Ec�yF .

Our assumption regarding the interaction will be the
presence of the long-range Coulomb interaction V �k� �
e2��4p2� logj�kc 1 k��kj [13], which remains unscreened
in one spatial dimension [14], plus an additional short-
range effective attraction coming from the coupling to
the elastic modes of the nanotube. In this framework,
we are neglecting backscattering and umklapp processes
that mix different chiralities and Fermi points, relying
on the fact that those interactions have smaller relative
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strength (�0.1�n, in terms of the number n of subbands
[7,15]) and they remain small down to extremely low
energies [7].

The correlators in the model governed by (1) can be
computed by changing variables to the total charge density
operators ri�k� � �1�

p
N �

P
as rias�k�, i � L, R, where

N stands in general for the number of channels ��a, s��,
so that N � 4 in the case of a single-walled nanotube.

A typical propagator of Cooper pairs, for instance, be-
comes

G�x, t� � 	CL1"�x, t�CR2#�x, t�C1
L1"�0, 0�C1

R2#�0, 0�


� C�x, t�F�x, t� , (2)

where F is the part that does not depend on the interaction
and C corresponds to the propagation of the total charge.
At zero temperature, for instance, we have

C�x, t� � exp

µ
2

2
N

Z kc

0
dk

1
m�k�k

3 �1 2 cos�kx� cos�ỹFkt��
∂

, (3)
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where m�k� � 1�
p

1 1 2NV �k��yF and ỹF � yF�m�k�.
The other factor has the simple dependence

F�x, t� � 1�jk2
c �x 2 yFt� �x 1 yFt�j�N21��N . (4)

The critical supercurrent I can be estimated under the
assumption that (i) the normal-superconductor junctions
are perfectly transmitting [16], or (ii) the single-particle
scattering is relevant at the interfaces [17]. The latter is
more realistic for the experiments that we are considering.
The distance L between the superconducting contacts is
large enough that I can be expressed as a function of L
and the temperature T as

IL�T� � eyFkc

Z 1�T

0
dt G�L, 2it� . (5)

In the above equation, G stands for the appropriate ex-
pression at finite temperature. The analytic continuation
to imaginary time, however, cannot be taken directly in
expressions such as (3), and for computational purposes
it is more convenient to introduce the temperature depen-
dence through the Matsubara formalism
C�x, 2it� � exp

∑
2

2
N

Z kc

0
dk

2T

yF

m�1`X
m�2`

1 2 cos�kx� cos�2pmTt�
�2pmT�ỹF �2 1 k2

∏
. (6)
We can use Eq. (5) to test whether the behavior
of the critical currents measured in Ref. [9] can be
reproduced within the present framework. The com-
parison should be fairly direct for the sample that is
made at one end of a single nanotube (called ST1

in Ref. [9]). According to the above discussion, we
consider a momentum-dependent parameter m�k� � 1�p

1 1 N�e2��2p2yF� logj�kc 1 k��kj 2 g��pyF��, tak-
ing in this case a number of channels N � 4 in the above
equations.

We have checked first that the critical current I �
0.1 mA of the ST1 sample at T � 0 K, found anoma-
lously high in the BCS framework, can be explained with
the present model. The results represented in Fig. 1 show
the magnitude of IL�0� for different values of the interac-
tion, the distance being measured in units of k21

c . The ac-
tual values of the supercurrent are obtained by multiplying
the magnitudes in Fig. 1 by the prefactor in Eq. (5). The
Fermi velocity can be obtained from the hopping amplitude
t � 2.1 eV and the nearest-neighbor distance a � 1.4 Å,
by using the expression yF � 3ta�2. A reasonable es-
timate of the cutoff kc for the single-walled nanotube is
kc � 0.5 nm21, which gives eyFkc � 30 mA.

We observe that the coupling corresponding to the bare
parameters of a graphite layer, 2e2��p2yF� � 8.0, does
not lead to sensible results. The total length of the sample
ST1 is �300 nm, and we should expect to get the correct
order of magnitude of the critical current at L � 50�kc.
The most appropriate value for the Coulomb interaction
seems to be 2e2��p2yF � � 1.0. The order of magnitude
I � 0.1 mA is then reached, most precisely if one takes
into account a coupling for the short-range attractive in-
teraction g��pyF � � 0.2. The sensible reduction in the
value of 2e2��p2yF� can be understood by the presence of
nearby charges and the renormalization of the interaction
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FIG. 1. Plots of the critical current (in units of eyFkc) versus
distance, at T � 0, for different strengths of the Coulomb in-
teraction. From top to bottom, the solid curves correspond to
2e2��p2yF � � 1.0, 2.0, 4.0, 8.0. The dotted lines correspond in
each case to the correction by effect of the additional short-range
interaction, with 4g��pyF� � 0.8.
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in the narrow rope into which the nanotube merges, as we
discuss afterwards.

Moreover, the dependence of the critical current on T
for the mentioned interaction strength reproduces the shape
that has been observed in the measurements of the sample
ST1. In the theoretical model, the temperature T is given
in units of the unique energy scale Ec. This means that
the critical temperature Tc � 0.4 K of the contacts for
the sample ST1 corresponds to the dimensionless value
Tc�Ec � 2 3 1024. We have represented in Fig. 2 the re-
sults for the critical current IL�T� at L � 50�kc, with and
without the effect of the short-range attractive interaction.
It is remarkable the smooth behavior of the critical cur-
rent in the low-temperature regime below Tc. The slight
increase observed near zero temperature is related to the
renormalization of the transmission at the interfaces [18].
Near Tc, the suppression of superconductivity in the con-
tacts should be incorporated to produce a sharp decrease,
leading then to the full agreement with the experimental
results of Ref. [9].

Moving now to the sample made of a rope of nanotubes
(called R03 in Ref. [9]), we have to take into account two
main differences with respect to the preceding discussion.
First, the energy scale Ec up to which the rope can be seen
as a purely one-dimensional system is smaller, compared
to the cutoff introduced for the sample ST1. Given that
the diameter of R03 can be approximately 15 times larger
than that of the single-walled nanotube of ST1, we may
assume that the energy cutoffs in the two samples differ in
the inverse proportion by a factor of 15. This means that
a given temperature of the sample R03, when measured in
units of the corresponding Ec, looks comparatively higher
than the same temperature in the sample ST1. Thus, the
critical temperature Tc � 1.1 K of the contacts used for
the sample R03 gives a dimensionless value Tc�Ec � 9 3
1023, which is more than 1 order of magnitude higher than
the ratio for the sample ST1.

0.000 0.002 0.004 0.006 0.008 0.010
T

I

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

FIG. 2. Plots of the critical current (in units of eyFkc) ver-
sus T�Ec , for 2e2��p2yF� � 1.0 and a coupling of the short-
range attractive interaction 4g��pyF� � 0 (lower curve) and 0.8
(upper curve).
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The second important difference between the rope of
nanotubes R03 and the sample ST1 is the interaction among
the large number of nanotubes ��200� in the former [19],
which leads to a significant renormalization of the strength
of the Coulomb interaction. This can be understood in the
bosonization approach developed above, if we consider
that each metallic nanotube in the rope contributes with
four units to the number N , while there is only one chan-
nel for the interaction of the total charge density [20]. The
picture is more involved considering the whole number of
nanotubes in the rope, but the overall physical effect can
be taken into account by assuming a convenient renormal-
ization of the bare coupling. It turns out, for instance, that
the correlations in an aggregate of 100 metallic nanotubes
with a bare coupling 2e2��p2yF� � 1.0 can be reproduced
in a system of decoupled nanotubes in which the interac-
tion has been renormalized down to 0.2, as observed in
Fig. 3. On the other hand, the attractive coupling g is not
affected by this kind of renormalization, as it refers to an
interaction with the elastic modes that takes place within
each nanotube.

Given that the total length of the sample R03 is
�1.7 mm, we have estimated the supercurrent by the de-
cay of IL through a distance L � 50�kc � 1.5 mm. The
evaluation of the prefactor in front of Eq. (5) is now more
delicate, compared to that for the sample ST1. On the one
hand, we have to bear in mind that the value of kc decreases
according to the increase in the diameter of the sample.
On the other hand, there are more metallic nanotubes
in the sample R03, in a number that may be estimated
as 1�3 of the total number, which gives �60 metallic
nanotubes. Balancing both points, it is appropriate to take
now a prefactor in Eq. (5) that is four times the value for
the single-walled nanotube.

FIG. 3. Plots of the critical current (in units of eyFkc) ver-
sus T�Ec for a renormalized interaction 2e2��p2yF � � 0.2 cor-
rected within each tube by the additional short-range attraction
with 4g��pyF� � 1.0, 0.75, 0.5, and 0 (solid lines from top to
bottom), and for an aggregate of 100 metallic nanotubes inter-
acting with strength 2e2��p2yF � � 1.0 (dashed line).
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We show in Fig. 3 the plots of IL�T�, within the above
picture of renormalization of the Coulomb interaction and
including the short-range attractive interaction in each
nanotube. The critical current in the sample R03 at
T � 0 K is I � 2.5 mA. We observe that the cor-
rect order of magnitude can be obtained from our
results by considering a renormalization of the coupling
2e2��p2yF� down to a value �0.2, together with the
effect of a weak short-range attractive interaction with
coupling g��pyF � � 0.15.

The value of the attractive coupling g is similar to that
required for the sample ST1, and it actually matches what
is expected from the coupling to the elastic modes of the
nanotube. The short-range effective attraction can be esti-
mated on theoretical grounds from the modulation of the
hopping t0 � ≠t�≠a � 4.2 eV Å21, the speed of sound
ys � 2.1 3 104 ms21, and the mass M of the atoms.
This gives g�yF � t02a3��My2

s yF� � 0.2, which is of the
same order of magnitude needed in our fits.

As a final check of the consistency of our approach,
we observe that the curves in Fig. 3 reproduce the de-
pendence on temperature measured experimentally in the
sample R03, with the characteristic inflection point and
the very slow decay around the critical temperature at
T � 1022Ec [9].

To summarize, we have seen that a model of interacting
electrons in one dimension is able to explain the order of
magnitude as well as the temperature dependence of the
critical currents in both the ST1 and the R03 samples of
Ref. [9]. Our description is free of the shortcomings aris-
ing from the conventional picture of the proximity effect,
which relates the value of the critical supercurrent to the
gap D and the normal resistance R through the expression
I � pD��eR�. Our approach focuses on the strong corre-
lations in the one-dimensional electron system, explaining
in this way why the experimental data of the supercurrent
do not follow in general the temperature dependence of the
gap in the superconducting contacts.

Our discussion also stresses the relevance of the
coupling to the elastic modes of the nanotube, which
reveals itself through the presence of a short-range attrac-
tive electron interaction. This is also supported by recent
experiments on the intrinsic superconductivity of ropes of
nanotubes [21]. In a sample such as R03, it can be already
observed that the supercurrent measured experimentally
does not vanish near Tc, which is at odds with the con-
ventional picture of the proximity effect but in accordance
with the results of our model. This enhancement of
the superconducting correlations should deserve further
136401-4
study, in order to understand the experimental conditions
under which the effect of the short-range attraction may
dominate over the Coulomb repulsion.
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