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We show that a simple model for pulsed laser deposition exhibits an unusual type of scaling behavior
for the island density in the submonolayer regime. This quantity is studied as a function of pulse intensity
and deposition time. We find a data collapse for the ratios of the logarithms of these quantities, whereas
conventional scaling as observed in molecular beam epitaxy involves ratios of powers.
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Many systems in equilibrium and nonequilibrium statis-
tical physics exhibit power-law scaling. This means that
a system with an observable, M, depending, for example,
on two parameters, z1 and z2, looks the same, if the units
of M, z1, and z2 are rescaled by certain factors which are
related to each other by power laws. Such a scaling trans-
formation can be written as

z1 ! Lz1, z2 ! Lbz2, M ! LaM , (1)

where L is a scaling parameter and a, b are certain expo-
nents. Equation (1) implies the scaling form,

M�z1, z2� � za
1 f�z2�z

b
1 � , (2)

where f is a scaling function depending on a scale-
invariant argument. This type of scaling can be observed
in a vast variety of applications, including equilibrium
critical phenomena [1,2], growth processes [3–8], driven
diffusive systems [9], as well as phase transitions far from
equilibrium [10,11].

As an example for power-law scaling, which we are
going to contrast with a different type of scaling in this
paper, let us consider the following well-known simple
model of molecular beam epitaxy (MBE): A particle beam
deposits atoms onto a flat substrate at a flux F (atoms per
unit area per unit time). The atoms diffuse on the substrate
with a surface diffusion constant D until they meet another
adatom, in which case they form a stable and immobile
nucleus of a two-dimensional island on the surface, or until
they attach irreversibly to the edge of an already existing
island.

The observable examined in this paper is the time-
dependent nucleation density, n, i.e., the number of
nucleation events per unit area in the first layer integrated
over time. Obviously, the nucleation density is a funda-
mental quantity characterizing the island morphology as it
indicates how many islands are formed. By definition, the
nucleation density increases monotonically with time and
saturates when the first monolayer is completed.

In MBE, the two parameters D and F can be used to
construct a characteristic length,

�0 � �D�F�1�4. (3)
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When the nucleation density reaches the value 1��2
0, the

rate of nucleation events decreases drastically since it be-
comes more likely that an adatom attaches to an already
existing island instead of forming a new nucleus with an-
other adatom. In terms of the coverage Q � Ft, i.e., the
total number of deposited atoms per unit area, the time de-
pendence of n is known to obey the scaling form,

n��0, Q� � �22
0 f1�Q�2

0� . (4)

As shown in Ref. [12], the scaling function f1 behaves as

f1�z� ~

Ω
z3 for 0 # z ø 1
z1�3 for 1 ø z & zmax .

(5)

zmax is determined by the condition that the whole sur-
face has been claimed by the islands, so that no further
nucleation in the respective layer is possible [13]. Thus,
MBE exhibits standard power-law scaling as described
by Eqs. (1) and (2). However, in pulsed laser deposi-
tion (PLD), an alternative method of growing thin epitaxial
films, we find that the nucleation density shows a funda-
mentally different type of scaling, which in MBE is real-
ized only approximately.

In order to work out the difference most clearly, let us
assume that the amplitudes of the asymptotic power laws in
(5) are equal (which is approximately the case in MBE),
so that one can get rid of them by dividing n��0, Q� by
the nucleation density at a particular coverage. In the
following, we extrapolate the power law (5) beyond zmax
to a full monolayer, Q � 1�a2, and define

M��0, Q� � n��0, Q��n��0, 1� � �
22�3
0 f2�Q�2

0� , (6)

where the lattice constant a has been set to unity. The
scaling function f2 is obtained from f1 by replacing the
proportionality in (5) by an equals sign. If we furthermore
suppose that the asymptotic power laws in (5) would re-
main valid right to the crossover point at Q�2

0 � 1 (which
is certainly not the case), then the scaling function would
have the additional symmetry,

f2�zl� � fl
2 �z� . (7)

As a consequence, the system would not only be invariant
under the scale transformation (1),

�0 ! L�0, Q ! L22Q, M ! L22�3M , (8)
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but also under

�0 ! �l
0 , Q ! Ql, M ! Ml. (9)

This is a scaling transformation for the logarithms with all
critical exponents equal to 1. According to (2) this would
imply

lnM � �ln�0�g�lnQ� ln�0� . (10)

with a piecewise linear scaling function g�z� whose slopes
are determined by the exponents in (5).

While in MBE this type of scaling holds only in an
approximate sense, we are going to show that under certain
conditions PLD indeed obeys the scaling form (10). PLD
is a growth technique in which the target material is ablated
by a pulsed laser and then deposited in pulses on a substrate
surface, i.e., many particles arrive simultaneously at the
surface [14]. Experimentally, each pulse has a length of
about a few nanoseconds and the time between two pulses
is of the order of seconds. It must be emphasized that the
physical conditions of PLD are by far less well defined than
for MBE. The particles deposited may be atoms, clusters,
or even droplets. They may arrive with energies ranging
from 0.1 to 1000 eV. Different theories are appropriate
for various physical conditions. For example, in [15] the
island statistics is studied for tin droplets deposited by PLD
on a sapphire substrate, and power-law scaling is found.
By contrast, our theory should apply for systems with two-
dimensional islands and deposition at low energies.

In order to investigate the scaling behavior of PLD, we
consider a variant of the model introduced in [16]. In con-
trast to that model, the duration of a pulse is assumed to be
zero. The transient enhancement of the mobility of freshly
deposited atoms is neglected. Our model is defined as a
solid-on-solid growth model on a square lattice of L 3 L
sites with integer heights representing the configuration of
the adsorbed layer. The model is controlled by three pa-
rameters, namely, the intensity I of the pulses, the diffu-
sion constant D, and the average flux density of incoming
particles F. The dynamic rules are defined as follows.
(i) In each pulse IL2 atoms are instantaneously deposited at
random positions on the surface. (ii) Between two pulses a
time interval Dt � I�F elapses, in which adatoms diffuse
to neighboring sites with rate D. The Ehrlich-Schwoebel
barrier is assumed to be zero, i.e., diffusion descending an
edge of an island takes place at the same rate D. (iii) If
two atoms at the same height occupy neighboring sites,
they stick together irreversibly, forming the nucleus of a
new island or leading to the growth of an already existing
island. Note that due to the absence of edge diffusion the
islands grow in a fractal manner before they coalesce.

If the intensity I is very low, PLD and MBE display
essentially the same properties. However, if the intensity
exceeds the average density of adatoms during a MBE pro-
cess, we expect a crossover to a different type of behavior.
This density is known to scale as �D�F�2g21 [13], where
g � 1�6, if the islands are compact, and more generally
135701-2
g � 1��4 1 df�, if they have the fractal dimension df .
Thus, the crossover takes place at a critical intensity,

Ic � �D�F�2g21. (11)

The qualitative difference between PLD and MBE for I .

Ic is shown in Fig. 1. As can be seen, there are many more
nucleations at an early stage, although the effective flux of
incoming particles is the same in both cases.

In order to avoid the influence of the crossover at I � Ic,
we restrict our PLD simulations to a particularly simple
case, namely, to the limit of an infinite D�F, meaning
that all adatoms nucleate or attach to an existing island
before the next pulse arrives. In this limit Ic � 0, and the
nucleation density again depends only on two variables,
n�I, Q�.

Performing Monte Carlo simulations, we investigated
the nucleation density for various intensities using a system
size of 400 3 400. The measurement always takes place
right before a new pulse is released. As can be seen in
Fig. 2, n�I, Q� increases with increasing intensity I. This
is plausible since for a higher intensity more atoms arrive at
the surface simultaneously so that more of them can meet
and form new islands.

From the dashed line in Fig. 2, one sees that the nucle-
ation densities after the first pulse, n�I, I�, lie on a straight
line with slope 1,

n�I, I� � 0.35�60.01�I . (12)

This observation can be explained as follows. After de-
position of the first pulse, the adatoms diffuse until they
meet and nucleate. Most of them will nucleate with an-
other adatom and form an island consisting of two atoms.
Thus, after completion of the nucleation process, the nu-
cleation density would be I�2. In reality, however, some
of the adatoms form bigger islands with three or more par-
ticles, but these processes lead only to a prefactor smaller
than 1�2 in (12).

At this point a remark on the system size is in order. Fi-
nite size effects have to be expected, if the pulse intensity
is so small that the resulting island density is of the order

MBE PLD

FIG. 1. Molecular beam epitaxy (left) compared to pulsed
laser deposition (right) for D�F � 108 and I � 0.01.
The figure shows typical configurations after deposition of
0.05 monolayers.
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FIG. 2. The nucleation density versus time during the deposi-
tion of a monolayer. The dashed line has the slope 1.

L22. If finite size effects cannot be observed for the small-
est pulse intensity I considered, one can be confident that
also for larger intensities the results are accurate. For a sys-
tem of size L2, the minimal intensity which can be simu-
lated is Imin � L22, where one gets exactly one island in
the system, independent of the coverage. Hence, for small
intensities (12) cannot hold any more, as n�I, I� $ Imin.
As we do not see any indication of the breakdown of (12)
(our smallest intensity was 8 times larger than Imin), finite
size effects can be ruled out, which was also verified for
other quantities [17].

Obviously, the usual scaling theory relying on power-
law scaling fails to describe the data in Fig. 2. However,
as shown in Fig. 3, it is possible to generate a data collapse
by using the scaling form,

lnM � �lnI�g�lnQ� lnI� . (13)

for the normalized nucleation density, M�I, Q� �
n�I, Q��n�I, 1� [18].

The data collapse has several nontrivial implications.
First, it is remarkable that the data points for the minimal
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FIG. 3. Data collapse according to the scaling form (13). The
inset shows a double-logarithmic plot of lnM� lnI vs lnQ� lnI .
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coverage Q � I (i.e., after the first pulse) fall on top of
each other in Fig. 3. This implies that

M�I, I� � n�I, I��n�I, 1� � Ik, (14)

with an exponent k � 0.44 6 0.02 and an amplitude
equal to 1.

Combining (12) with (14), one concludes that also
the maximum nucleation density n�I, 1� must have a
power-law dependence on the pulse intensity:

n�I, 1� ~ I2n, (15)

with n � �1 2 k��2 � 0.28 6 0.01 and the same ampli-
tude as in (12).

Equation (15) agrees with the power-law scaling of
the maximum island density discussed by Jensen and
Niemeyer [16], who give a slightly smaller exponent 1�4.
This discrepancy can be explained by the fact that our
islands are fractal. In [19] we showed that for finite D�F
the island density, respectively, the nucleation density at a
given coverage, obeys the following power-law scaling:

n�I, D�F, Q � 1� � �D�F�22gf�I�Ic� , (16)

where Ic is given by (11). This equation describes the
crossover from MBE-like behavior, n ~ �D�F�22g , for
I ø Ic, to PLD-like behavior (15) for I ¿ Ic. As in
the PLD regime, the island density does not depend on
D�F [16]; I2n

c must compensate the factor �D�F�22g.
Hence, n � g��1 2 2g� � 1��2 1 df �. For compact
islands (df � 2) this agrees with the value 1�4 given by
Jensen and Niemeyer [16], while our n value indicates
a fractal dimension df � 1.6 6 0.1 in agreement with
diffusion limited aggregation on a square lattice [20].

The second interesting observation concerns the
crossover from PLD to MBE. As outlined before, the
scaling form (13) for PLD should also hold for finite D�F
provided that I $ Ic. Therefore, this scaling form can be
compared with the approximate scaling form for MBE
(10) at the crossover point I � Ic, where both scaling
concepts should “intersect.” For the sake of transparency,
we give here only the derivations for the case of compact
islands, df � 2, g � 1�6, which is the most relevant one
for comparison with experiments. Because of Eqs. (3) and
(11), the crossover between the MBE and the PLD regime
is characterized by the length scale �0 � I

23�8
c . Taking

the logarithm of (10) and dividing by lnIc � 2�8�3� ln�0,
we obtain

lnM�Ic, Q�
lnIc

�

8<
:

3 lnQ

lnIc
2 2 for 3

4 ø
lnQ

lnIc
lnQ

3 lnIc
for 0 ø

lnQ

lnIc
ø

3
4 .

(17)

In the limit I � Ic ! 0, the crossover between the two
power laws becomes sharper so that (17) converges to
a piecewise linear curve, which is shown in Fig. 3 as a
dashed line. Surprisingly, the crossover point,

lnQc� lnIc � 3�4, lnM�Ic, Qc�� lnIc � 1�4 , (18)
135701-3



VOLUME 87, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 24 SEPTEMBER 2001
coincides within the numerical errors with the collapsed
curves for PLD. This is plausible for the following rea-
sons. First, the PLD curve must be an upper bound for the
MBE curve, because the island density in PLD is always
larger. Moreover, if the gap between the two extrapolated
curves did not close at the crossover between PLD and
MBE behavior, it would imply that there is an additional
characteristic length in the system, for which we have no
evidence. We did the calculation also for a general g.
The quality of the coincidence between the two curves at
the crossover point does not significantly improve for this
more accurate theory.

The third remarkable result is that the scaling function
in Fig. 3 is approximately a power law,

g�z� � Azb, (19)

where A � 1 2 2n due to (12), (14), and (15) and, hence,
is determined by g. The exponent b is also determined by
g, if one demands that the function (19) goes through the
point (18) modified according to the actual value of g. The
result is a b value between 2.0 and 2.4. The log-log plot
of the scaling function g is given in the inset of Fig. 3 and
shows that the power law is only approximately fulfilled
with an exponent of about 2 for small coverage and 2.4 for
large coverage.

In summary, we have demonstrated that a simple model
for pulsed laser deposition displays an unusual type of
scaling behavior. In its most general setup, this kind of
scaling behavior is observed in systems which are invariant
under the transformation,

M ! Mla

, zi ! zlbi

i , (20)

for arbitrary l, where a and b1, . . . , bn are certain expo-
nents. The corresponding scaling form reads

lnM � �lnz1�ag

µ
lnz2

�lnz1�b2
, . . . ,

lnzn

�lnz1�bn

∂
. (21)

Performing numerical simulations, we have demonstrated
that such a scaling form leads to a convincing data collapse
for PLD in the limit of an infinite diffusion constant. In
contrast to ordinary scaling functions, the function g is
defined on a limited interval between two points.

The scaling forms (13) and (16) are limiting cases of
a unified scaling theory for n�I, D�F, Q� yet to be de-
veloped. Compatibility indicates that (13) is related to
logarithmic corrections of (16), but we do not have a con-
vincing physical explanation for them. Correspondingly,
135701-4
it is not yet clear to what extent the scaling function g is
universal, i.e., independent of details of the dynamic rules
of the model.
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