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Laplacian Growth and Diffusion Limited Aggregation: Different Universality Classes
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It had been conjectured that diffusion limited aggregates and Laplacian growth patterns (with small
surface tension) are in the same universality class. Using iterated conformal maps we construct a one-
parameter family of fractal growth patterns with a continuously varying fractal dimension. This family
can be used to bound the dimension of Laplacian growth patterns from below. The bound value is
higher than the dimension of diffusion limited aggregates, showing that the two problems belong to two
different universality classes.
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Laplacian growth patterns are obtained when the bound-
ary G of a two-dimensional domain is grown at a rate pro-
portional to the gradient of a Laplacian field P. Outside
the domain =2P � 0, and each point of G is advanced at a
rate proportional to ===P [1]. It is well known that without
ultraviolet regularization such growth results in finite time
singularities [2]. In correspondence with experiments on
viscous fingering one usually adds surface tension, or in
other words solves the above problem with the boundary
condition P � sk where s is the surface tension and k

the local curvature of G [3]. The other boundary condition
is that as r ! ` the flux is ===P � const 3 r̂�r. Figure 1
(left) shows a typical Laplacian growth pattern.

Diffusion limited aggregation (DLA) [4] begins with fix-
ing one particle at the center of coordinates in 2 dimen-
sions, and follows the creation of a cluster by releasing
fixed size random walkers from infinity, allowing them to
walk around until they hit any particle belonging to the
cluster. Since the particles are released one by one and may
take an arbitrarily long time to hit the cluster, the proba-
bility field is quasistationary and in the complement of the
cluster we have again =2P � 0. In this case the boundary
condition on the cluster is P � 0, but finite time singu-
larities are avoided by having finite size particles. The
boundary condition at infinity is exactly as above. A typi-
cal DLA is shown in Fig. 1 (right).

In spite of the different ultraviolet regularizations of
Laplacian growth and DLA, it was speculated by many au-
thors [5] that the two problems belong to the same “univer-
sality class,” and it was expected that the resulting fractal
patterns will have the same dimension. In this Letter, we
argue that this is not the case: there are deep differences
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between the two problems, and in particular Laplacian
growth patterns have a dimension considerably higher than
DLA. In one sentence, the differences between the prob-
lems stem from the fact that Laplacian patterns are grown
layer by layer, whereas DLA is grown particle by particle.
Unfortunately, traditional techniques used to grow
Laplacian growth patterns, either numerical [6] or experi-
mental [7], fail to achieve patterns large enough to extract
reliable dimensions (see Fig. 9 in [6], for example). The
numerical algorithms are extremely time consuming due
to the stiffness of the equations involved; experimentally it
is difficult to construct large quasi-two-dimensional (Hele-
Shaw) cells without introducing serious deformations.

The aim of this Letter is to provide a scheme to
simulate the zero surface tension Laplacian growth that
has a finite size regularization and thus does not suffer
from finite time singularities. We introduce a 1-parameter
family of growth processes based on iterated conformal
maps [8,9]. Contrary to DLA which grows particle by
particle, we will construct the family of growth processes
to mimic Laplacian growth, in which a layer is added to
the boundary G at each growth step, with a width propor-
tional to the gradient of the field. Consider then F�n��v�
which conformally maps the exterior of the unit circle eiu

in the mathematical v plane onto the complement of the
(simply connected) cluster of n particles in the physical z
plane. The unit circle is mapped onto the boundary of
the cluster. The map F�n��v� is made from compositions
of elementary maps fl,u, F�n��v� � F�n21����fln ,un �v����,
where the elementary map fl,u transforms the unit circle
to a circle with a “bump” of linear size

p
l around the

point v � eiu . In this Letter, we employ the elementary

map [8]
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fl,u�v� � eiufl,0�e2iuv� . (2)

With this choice the map F�n��v� adds on a new semicir-
cular bump to the image of the unit circle under F�n21��v�.
The bumps in the z plane simulate the accreted particles in
the physical space formulation of the growth process. The
recursive dynamics can be represented as iterations of the
map fln ,un �v�,

F�n��v� � fl1,u1 ± fl2,u2 ± . . . ± fln ,un�v� . (3)

With the present technique it is also straightforward to
determine the dimension. The conformal map F�n��v�
© 2001 The American Physical Society 134501-1
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FIG. 1. Left: Typical Lapla-
cian growth pattern with surface
tension; cf. Ref. [6]. Right:
Typical DLA cluster of 100 000
particles.
admits a Laurent expansion

F�n��v� � F
�n�
1 v 1 F

�n�
0 1

F
�n�
21

v
1 · · · . (4)

The coefficient of the linear term is the Laplace radius, and
was shown to scale as

F
�n�
1 � S1�D , (5)

where S is the area of the cluster (the sum of the actual
areas of the bumps in the physical space). On the other
hand, F

�n�
1 is given analytically by

F
�n�
1 �

nY
k�1

p
�1 1 lk� , (6)

and therefore can be determined very accurately.
Different growth processes can be constructed by proper

choices of the itineraries �ui�n
i�1 [10], and rules for deter-

mining the areas of the bumps �li�n
i�1. In DLA growth

[8,9]one wants to have fixed size bumps in the physical
space, say of fixed area l0. Then one chooses in the
nth step

ln �
l0

jF�n21�0�eiun �j2
, DLA growth. (7)

The probability to add a particle to the boundary of the
DLA cluster is the harmonic measure, which is uniform on
the circle. Thus in DLA the itinerary �ui�n

i�1 is random,
with uniform probability for ui in the interval �0, 2p�.

For our present purposes we want to grow a layer of
particles of varying sizes, proportional to the gradient of
the field, rather than one particle of fixed size. This entails
three major changes. First, if we want to grow one particle
of size proportional to the gradient of the field (i.e., area
proportional to jF�n21�0�eiun �j22) we need to choose

ln �
l0

jF�n21�0�eiun �j4
, present models. (8)

Second, to grow a layer, we need to accrete many particles
without updating the conformal map. In other words, to
134501-2
add a new layer of p particles when the cluster contains
m particles, we need to choose p angles on the unit circle
�ũm1k�p

k�1. At these angles we grow bumps which in the
physical space are proportional in size to the gradient of
the field around the m-particle cluster:

lm1k �
l0

jF�m�0�ei ũm1k �j4
, k � 1, 2 . . . , p . (9)

Last, and very importantly, we need to choose the itinerary
�ũm1k�p

k�1 which defines the layer. This itinerary is chosen
to achieve a uniform coverage of the unit circle before any
growth takes place. The parameter that will distinguish
one growth model from another, giving us a 1-parameter
control, is the degree of coverage. In other words, we
introduce the parameter

C �
1
p

pX
k11

p
lm1k . (10)

This parameter is the fraction of the unit circle which is
covered in each layer, with the limit of Laplacian growth
obtained with C � 1. It turns out to be rather time con-
suming to grow fractal patterns with C close to unity. But
we will show below that this is hardly necessary; already
for C of the order of 1�2 we will find patterns whose frac-
tal dimension significantly exceeds that of DLA, offering
a clear lower bound on the dimension of Laplacian growth
patterns.

Once a layer with coverage C had been grown, the
field is updated. To do this, we define a series �uk�p

k�1
according to

F�m��eiũm1k � 	 F�m1k21��eium1k� . (11)

Next we define the conformal map used in the next layer
growth according to

F�m1p��v� 	 F�m� ± fum11,lm11 ± . . . ± fum1p,lm1p �v� .
(12)

It is important to notice that on the face of it this conformal
map appears very similar to the one obtained in DLA,
134501-2
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Eq. (3). But this is deceptive; the distribution of u values
is different, we do not update the map after each particle,
and the growth rule is different.

We can achieve a uniform coverage C using various itin-
eraries. One way is to construct the “golden mean trajec-
tory” ũm1k11 � ũm1k 1 2pr where r � �

p
5 2 1��2.

At each step we check whether the newly grown bump may
overlap a previous one in the layer. If it does, this growth
step is skipped and the orbit continues until a fraction C
is covered. Another method is random choices of ũm1k

with the same rule of skipping overlaps. We have tried
several other itineraries. Of course, to be an acceptable
model of Laplacian growth the resulting cluster should be
invariant to the itinerary. This invariance is demonstrated
below. The central thesis of this work is that the dimension
of the resulting growth patterns is dependent on C only,
and not on the itinerary chosen to achieve it. Numerically
it is more efficient to use the golden mean itinerary since
it avoids as much as possible previously visited regions.
In order to achieve comparable growth rates for different
layers we inflated l0 in Eq. (9) according to l0 ! ml0 in
the layer composed of p particles �m 1 k�p

k�1. In Fig. 2
we show F1 of clusters grown by choosing 3 different itin-
eraries to produce the layers and for two values of C .

We conclude that the dimension (determined by the
asymptotic behavior of F1 vs S) does not depend on the
itinerary used to form the layers but on C only.

In Fig. 3 we show three fractal patterns grown with this
method, with three different values of C . Even a cursory
observation should convince the reader that the dimension
of these patterns grows upon increasing C .

In order to calculate the dimension we averaged F1 of
many clusters produced by the golden mean itinerary, each
with another random initial angle in each layer. Plots of
the averages 
F1� for 3 values of C are presented in Fig. 4.
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FIG. 2. Log-log plots of F1 vs S of six individual clusters, us-
ing three different itineraries for layer construction, with two val-
ues of C . C � 0.3 (upper group) and C � 0.5 (lower group).
Here we use the golden-mean, random, and period doubling itin-
eraries (see Ref. [10]).
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We conclude that the dimension of the growth pattern
increases monotonically with C , with D � 1.85 when
C � 0.6.

The main point of this analysis is that the dimension
of Laplacian growth patterns is bounded from below by
the supremum on the dimensions obtained in this fam-
ily of models. First, Laplacian growth calls for C � 1.

a

b

c

FIG. 3. Patterns grown with three different values of C by
using the golden-mean itinerary: (a) C � 0.1; (b) C � 0.3;
(c) C � 0.5.
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FIG. 4. Linear regressions of log-log plots of 
F1� vs S for
three values of C : 0.1 (solid line); 0.3 (dotted line); and 0.6
(dashed line). The slopes of the curves imply dimensions D �
1.37, D � 1.75, and D � 1.85, respectively. The averages are
taken over at least 20 clusters.

Second, in Laplacian growth the boundary condition is
P � sk, suppressing growth at the tips (and relatively fa-
voring growth in the fjords) compared to growth with the
boundary condition P � 0. Accordingly, on the basis of
the results shown in Fig. 4, we propose that the dimension
of Laplacian growth patterns exceeds 1.85, putting it dis-
tinctively away from the dimension of DLA, which is about
1.71 [11]. We stress that there may be slow crossovers in
the dimension estimates, but if these exist they tend to un-
derestimate the dimension, leaving our bound intact.

In hindsight, it is difficult to understand how the consen-
sus formed in favor of DLA and Laplacian growth being
in the same universality class. Superficially, one could say
that in DLA the update of the harmonic measure after each
particle is not so crucial, since the effect of such an update
is relatively local [12]. Thus it may just work that a full
layer of particles would be added to the cluster before ma-
jor interaction between different growth events takes place.
However, this view is completely wrong. An incoming
random walker lands on top of a previously attached one
very often. To see this, consider how many angles �uj�
can be chosen randomly on the unit circle before the first
overlap between bumps [of linear sizes ej �

p
ln�eiuj � ].

To get the order of magnitude take ej � e � 

p

ln �. The
average number of times that we can choose randomly an
angle before the first overlap is N �e� � 1

p
e

. The length
of the unit circle that is covered at that time by the already
chosen bumps is L �e� � eN �e� �

p
e. It was shown

in [9] that for DLA 
ln� � 1
n , so that e � 1

p
n , implying

N �n� � n1�4. Notice that this result means in particular
that for a DLA cluster of 1 million particles only less than
50 random walkers can be attached before two of them
will arrive at the same site. Moreover, L �n� � 1

n1�4 ! 0
for n ! `, which means that as the DLA cluster grows,
our coverage parameter C goes to zero, rather than to unity
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where Laplacian growth is. Taking spatial fluctuations of
ln into account may change the exact exponents, but not
the qualitative result. This argument clarifies the profound
difference between growing a whole layer simultaneously
and particle by particle. Note, however, that DLA is not
the C ! 0 limit of our 1-parameter family due to the dif-
ference between Eqs. (7) and (8).

The results of this study underline once more the deli-
cacy of the issues involved. Fractal patterns depend sensi-
tively on the details of the growth rules. Even though the
analytic presentation seems very similar, to the degree that
many researchers were led to believe in wide universal-
ity classes, we showed here that one must be much more
cautious. By lifting the models into families of growth
patterns depending on a parameter we could demonstrate
strong variability of the fractal dimension. Here we con-
structed the family to bound from below Laplacian growth
patterns. A similar family can be constructed to bound
DLA from above. This and other aspects of this method
will be reported elsewhere.
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