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Correlated Electrons in Lithiumlike Hollow Atoms
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We present a scheme for the explicit construction of highly correlated triply excited hollow states in
Coulombic three-electron systems. Our analytical ansatz for the three-electron state is physically well
justified and it produces configuration mixing coefficients in good agreement with data obtained from
ab initio calculations.
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The description and understanding of electron-electron
correlations in multiply excited Coulombic systems rep-
resent one of the outstanding problems in modern atomic
physics. Using synchrotron radiation with photon energies
about 60 eV, Madden and Codling in the 1960s observed
resonances ascribed to autoionizing doubly excited states
in the He atom [1]. These states were described theo-
retically by Fano [2], who pointed out the important role
of the electron repulsion and the effective description of
the states as superpositions of coupled angular momen-
tum eigenstates (configuration mixing). Subsequently,
alternative approaches were developed for the theoretical
description of the doubly excited states. The two-electron
(three-body) problem has been addressed in hyperspheri-
cal coordinates [3], and a close investigation of the
electron correlations displayed in these coordinates [4]
confirms the validity of group theoretical classifications
[5], and it supports molecular pictures [6,7]. Further
progress on the group theoretical description is reported
in Ref. [8], and references therein. For states with both
electrons in the same principal shell, the group theoretical
method was proven to be equivalent to a description
where the two electrons occupy Stark states which are
subsequently rotated to account for the total angular
momentum quantum numbers [9].

Recent progress in advanced light sources delivering
photon energies of hundreds of eV has enabled experimen-
tal investigations of highly correlated triply excited states
embedded in the continua of the singly and doubly ionized
atom. In lithium, triply excited states were observed by
photoabsorption [10], photoion [11,12], and also in pho-
toelectron [13,14] measurements. Triply excited states of
even parity were investigated [15], as well as states with
empty n � 1 and 2 shells [16,17]; several Rydberg se-
ries were identified [18–23], and angle-resolved photo-
electron spectrometry was reported [24]. The experimental
results were compared with R-matrix [13–16,18–20,24]
and Dirac-Fock calculations [12,17] and very accurate cal-
culations using the saddle-point complex rotation method
[16,25]. In addition, the hyperspherical coordinate method
has been applied to the three-electron problem [26], and
it has revealed a propensity for the three excited elec-
trons to arrange themselves in the corners of an equilateral
coplanar triangle with the nucleus in the center —a spatial
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arrangement similar to the three-pointed star displayed on
Mercedes Benz vehicles. This arrangement minimizes the
electron repulsion, and it was already suggested 25 years
ago to play an important role in the three-electron-ejection
Wannier problem [27] (see also [28] for a semiclassical
treatment of triply excited states based on the same geom-
etry). To date, however, no quantum mechanical descrip-
tion has invoked this physical picture to provide an explicit
construction of the quantum mechanical state of the triply
excited system well below the Wannier threshold. We sug-
gest and we verify, by a quantitative comparison with ab
initio calculations, that hollow three-electron atoms which
have no electrons in the inner Bohr orbital can be accu-
rately described by a simple analytical product wave func-
tion with a spatial arrangement of the three electrons in a
coplanar equilateral triangle. As in molecular and nuclear
physics, a rotor series of states with appropriate spatial
symmetry is identified by a subsequent rotational average
of this “intrinsic rotor” state.

In the following, we consider hollow states for the case
of three electrons moving in the Coulomb field of a point-
like nucleus of charge Z, corresponding to the nonrelativis-
tic lithiumlike Hamiltonian,
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where m is the reduced electron mass and e is the electron
charge.

In theoretical descriptions, as the configurational inter-
action or the R-matrix approaches, the electron-electron
interaction enforces quantum “entanglement” and the elec-
tron correlations are accounted for in terms of linear com-
binations of angular momentum and spin-multiplet wave
functions [12–25], which cannot be factorized into a prod-
uct of single-particle states. However, in the present ap-
proach, the electron-electron interaction will be taken care
of by a simple product of three carefully chosen single-
particle states. Entanglement is subsequently enforced by
spin, exchange, and rotational symmetry.

In the coplanar three-pointed star, the interaction be-
tween any one electron and the two others is approximately
represented by a repulsive field along the direction z (with
respect to the nucleus) of the electron under concern. For
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the pure Coulomb potential, the spherical and the polari-
zed Stark bases both span the degenerate n2-dimensional
eigenspace for a given principal shell, n. The Stark states
are eigenstates of the hydrogenic Hamiltonian perturbed by
a weak external electric field causing only intrashell tran-
sitions [29]. Hence, the interelectronic interaction tends
to stabilize the electrons in individual Stark states and
the appropriate one-electron states are maximally polari-
zed along z , jn, k � n 2 1, m � 0�z , with k the parabolic
and m the magnetic quantum number. Choosing for con-
venience the xy plane for the directions of orientation of
the three electrons, our ansatz for the spatial wave function
is simply a product of three Stark states

jYR� � jn, n 2 1, 0�0jn, n 2 1, 0�2p�3jn, n 2 1, 0�22p�3 ,
(2)

where the subscripts �0, 62p�3� denote one electron maxi-
mally polarized along the x axis and the two others in
equivalent states rotated 62p�3 in the xy plane. It is a
remarkable feature that polarized single-electron states
are exact solutions of the spherically symmetric Coulomb
problem, and that the state of Eq. (2) therefore diagonali-
zes exactly the single-particle parts of the Hamiltonian of
Eq. (1), and according to the above arguments it also di-
agonalizes approximately the interaction terms. Figure 1
shows the column probability density in the state of
Eq. (2), i.e., the electron density integrated over the
z coordinate for different values of x and y. One observes
a three-pointed distribution, minimizing the Coulomb
repulsion between the electrons. The central peak around
the atomic nucleus at �x, y� � �0, 0� is a consequence
of the attraction between the nucleus and the electron, and
the three-pointed star shape which reflects the repulsion
between the electrons is therefore present both in the outer
region and in the (less populated) inner region near the
nucleus.

Note that a product state is the simplest possible way
to represent a many-particle wave function. We have to
supplement, however, our simple ansatz of Eq. (2) with an
account of the electronic spin degrees of freedom, and we
have to ensure that the states proposed are antisymmetric
under exchange of any two electrons (Pauli principle) and
that they are eigenstates of total angular momentum, re-
flecting the rotational symmetry of the problem.

As we consider the spin-independent Hamiltonian of
Eq. (1), the spin is accounted for by multiplying the spatial
wave function of Eq. (2) by a spin function, jxS

MS
�, which

specifies the conserved total spin of the three electrons S
and its projection MS ,

jC
SMS

R � � jYR� jxS
MS

� . (3)

For three intrashell electrons no physical grounds serve to
single out particular values of an intermediate spin of any
two of the electrons. Accordingly, we do not follow the
usual sequential coupling scheme for spin variables, but
instead we propose a new coupling scheme and construct
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FIG. 1. Column probability density in the xy plane of the state
of Eq. (2). The probability densities of the three electrons are
added and integrated along the z axis, and one observes a three-
pointed distribution, minimizing the Coulomb repulsion energy.
The central peak around the atomic nucleus at �x, y� � �0, 0�
reflects that the Stark states solve the Coulomb problem. The
Bohr radius is �5.29 3 10211 m.

spin functions such as, for example, the spin-doublet
eigenstate,

jx
S�1�2
MS�1�2� �

1
p

3
�j#""� 1 e2pi�3j"#"� 1 e22pi�3j""#�� ,

(4)

inspired by the theory of spin waves in solids [30]. This
spin state is composed of i�

p
2 intermediate spin-singlet

and 1�
p

2 intermediate spin-triplet states.
In addition to the spin, the total angular momentum L

and projection M are good quantum numbers. To obtain
an eigenstate for these conserved quantities we perform the
rotational average

jC
LM,SMS
R,MI

� � N
Z

dv D L
MMI

�v��jC
SMS
R �v , (5)

with D
L
MMI

�v� the Wigner function representing finite ro-
tations by Euler angles v � �a, b, g� [31]. The subscript
v refers the state jC

SMS

R �v to a rotated coordinate frame.
N is a normalization constant. The prescription of Eq. (5)
is also used in molecular [32] and nuclear physics [33] to
ensure the proper external symmetries of states for which
the internal correlations are accounted for in a symmetry-
broken frame. As in molecular and nuclear physics we then
get the explicit picture of an intrinsic rotor (2), which is at-
tributed to angular momentum by the rotational average in
Eq. (5). The quantum number MI in Eq. (5) fixes, by a
projection, the magnetic quantum number of the intrinsic
rotor with respect to the internal rotor axis. In molecules,
this is an important quantum number contributing a term
�M2

I to the rotational spectrum. The degeneracy of states
with 6jMI j is lifted by the Coriolis interaction of rotation
and vibrations [32].
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Finally a complete antisymmetrization of the state is ac-
complished by the operator A � �1 1 C 1 C2 2 P12 2

P13 2 P23�,

jC
LM,SMS

R,MI ,A � � NAAjC
LM,SMS
R,MI

� , (6)

where C is a cyclic permutation, and Pij interchanges par-
ticle i and j. NA is a normalization constant.

Equation (6) is our final analytical ansatz for the three-
electron hollow states. The Stark states in Eq. (2) have
known analytical expressions, and the operations involved
in Eqs. (3)–(6) can also be handled analytically. It is thus
straightforward to compare our ansatz with the results of
elaborate numerical diagonalizations of the three-electron
Hamiltonian, i.e., to expand the state of Eq. (6) on the
usual multiplet terms, and compare the mixing fractions
with the ones obtained numerically. Table I shows a com-
parison between symmetric rotor and configurational mix-
ing fractions for the lowest lying triply excited 2P state
in the third principal shell. Based on the dominant con-
figuration the state is referred to as the 3s3s3p 2P atomic
resonance. As seen from Table I, the symmetric rotor not
only predicts the general trend in the mixing fractions, but
actually compares very well with the ab initio calculations.
Note that, although the mixing fractions in Table I differ
slightly, the symmetric rotor and the numerical wave func-
tion may have an overlap as large as 0.98 (assuming equal
phases of the amplitudes). Also the comparison with the
configuration interaction (CI) results for lithiumlike N41

allows us to stress the Z independence of the configura-
tion mixing fractions in our model.

To conclude, we have constructed symmetric rotor states
based on the physical assumption that the three electrons
in a triply excited intrashell hollow state orient themselves
in a three-pointed star. The Stark states are eigenstates of
the pure Coulomb problem which are polarized, and our
quantum state ansatz for the rotor is simply a product of
three Stark states, polarized at 120± with respect to each
other. The subsequently antisymmetrized and rotated prod-
uct states account very accurately for the electron-electron
correlations within the system. In parallel to the studies in
hollow lithium, work is in progress on triply excited states
in He2 (see Ref. [35], and references therein), and our ana-
lytical wave function should also represent this system very

TABLE I. Symmetric rotor mixing fractions for the lowest
n � 3 triply excited state 2P�3s3s3p� of atomic lithium. The
first column gives the antisymmetrized angular momentum and
spin-multiplet wave functions. Our numbers in the second col-
umn are compared with CI configuration mixing coefficients
[17,34], as presented in the last two columns.

LS state jC
L�1,S�1�2
R,A � Ref. 17 (Li) Ref. 34 �N41�

j3s3s3p 2P� 67.44 61.8 64.0
j3p3p3p 2P� 18.97 20.0 19.5
j3s3p3d 2P� 11.80 13.5 13.2
j3p3d3d 2P� 1.79 3.3
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well. Predictions based on the symmetric rotor will present
analytical reference data for future experiments and calcu-
lations. Of particular interest will be radiative matrix ele-
ments from the ground state and among hollow states [36].
We do not expect the precision of our ansatz to compete
with the precision of current elaborate numerical methods.
But, we expect it to be sufficient to account for and expose
the underlying physics of systematic features [37].

We note that we have provided an explicit construction
of the maximally correlated triply excited state, and that
the ideas of this Letter have a natural extension to multiply
excited states in systems with 4, 6, 8, 12, and 20 electrons,
corresponding to the five regular convex polyhedra of ℜ3.
In view of advances in accelerator-based bright coherent
light sources, quadruply excited states may soon be reali-
zed in experiment. Based on the experience from doubly
excited states [9], we expect that products of less polarized
Stark states may form the basis for less correlated rotors
and thus account for the other states in the multiply ex-
cited manifold. As mentioned, the Stark state construction
is fully equivalent to the group theoretical classification
of doubly excited states, and we hope that our work will
stimulate the search for a firm group theoretical classifica-
tion of multiply excited states.
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