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Realization of Bose-Einstein Condensates in Lower Dimensions
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Bose-Einstein condensates of sodium atoms have been prepared in optical and magnetic traps in which
the energy-level spacing in one or two dimensions exceeds the interaction energy between atoms, re-
alizing condensates of lower dimensionality. The crossover into two-dimensional and one-dimensional
condensates was observed by a change in aspect ratio and by the release energy converging to a nonzero
value when the number of trapped atoms was reduced.
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The study of one- and two-dimensional systems is an
important area in condensed matter physics since the
properties of phase transitions and the nature of collective
excitations depend on the spatial degrees of freedom.
Bose-Einstein condensation (BEC) is impossible in 1D
and 2D in a homogenous system, but should occur in
atom traps because the confining potential modifies
the density of states [1]. In this Letter, we study how
condensates in extremely anisotropic traps assume 1D
or 2D character when the number of atoms is reduced.
Dilute-gas condensates of density # in axially symmetric
traps are characterized by four length scales: their radius
R, their axial half-length R,, the scattering length a
which parametrizes the strength of the two-body inter-
action, and the healing length ¢ = (47na)”™'/? [2]. In
almost all experiments on Bose-Einstein condensates, both
the radius and length are determined by the interaction
between the atoms and, thus, R, ,R, > & > a. In this
regime, a BEC is three-dimensional and is well described
by the so-called Thomas-Fermi approximation [3]. A
qualitatively different behavior of a BEC is expected when
the healing length is larger than either R, or R, since
then the condensate becomes restricted to one or two
dimensions, respectively. Some authors refer to such an
energetic restriction as quasi-low-dimensional [4,5]. New
phenomena that may be observed in this regime are, for
example, quasicondensates with a fluctuating phase [4—6]
and a Tonks gas of impenetrable bosons [5,7,8].

In this Letter, we report the experimental realization
of cigar-shaped 1D condensates with R, > ¢ > R, and
disk-shaped 2D condensates with R, > & > R,. The
crossover from 3D to 1D or 2D was explored by reducing
the number of atoms in condensates which were trapped
in highly elongated magnetic traps (1D) and disk-shaped
optical traps (2D) and measuring the release energy. In
harmonic traps, (quasi)lower dimensionality is reached
when usp = 4mh?an/m < hw,. Here w, is the trapping
frequency in the tightly confining dimension(s) and u3p is
the interaction energy of a weakly interacting BEC, which
in 3D corresponds to the chemical potential. Other experi-
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ments in which the interaction energy was comparable
to the level spacing of the confining potential include
condensates in one-dimensional [9] and recently two-
dimensional [10] optical lattices and the crossover to an
ideal-gas (zero-D) condensate [11], all at relatively low
numbers of condensate atoms.

Naturally, the number of interacting atoms in
(quasi)low-dimensional condensates is limited. The peak
interaction energy of a 3D condensate of N atoms with
mass m is given by usp = i2/2m(15Na/I211)*°, where
li,z = (ii/ma)l,z)l/2 are the oscillator lengths of the
harmonic potential. The crossover to 1D and 2D, defined
by msp = hw, or equivalently ¢ = [;, occurs if the
number of condensate atoms becomes
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where we have used the scattering length (¢ = 2.80 nm
[12]) and mass of 2Na atoms to derive the numerical fac-
tor. Our traps feature extreme aspect ratios resulting in
Nip > 10* and Nop > 10°, while for most standard BEC
traps the numbers are significantly smaller.

For the 1D case, the condition ¢ = [; yields a linear
density 7i;p = 1/4a, implying that the linear density of a
1D condensate is limited to less than one atom per scatter-
ing length independent of the radial confinement. There-
fore, tight transverse confinement, as may be achievable
in small magnetic waveguides [13] or hollow laser beam
guides [14], is by itself not helpful to increase the number
of atoms in a 1D condensate. Large 1D numbers may be
achieved only at the expense of longer condensates or if
the scattering length is smaller.

In anisotropic traps, a primary indicator of crossing the
transition temperature for Bose-Einstein condensation is
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a sudden change of the aspect ratio of the ballistically
expanding cloud, and an abrupt change in its energy. The
transition to lower dimensions is a smooth crossover, but
has similar indicators. In the 3D Thomas-Fermi limit,
the degree of anisotropy of a BEC is independent of the
number N of atoms, whereas in 1D and 2D, the aspect
ratio depends on N. Similarly, the release energy in 3D
depends on N [3] while in lower dimensions, it saturates at
the zero-point energy of the tightly confining dimension(s).

A trapped 3D condensate has a parabolic shape,
and its radius and half-length are given by R, =
1. (15Nal  /I)'/3 and R, = 1,(15Nal3/11)'/3 [3], result-
ing in an aspectratioof R | /R, = li/lZ = w,/w,. When
the 2D regime is approached by reducing the atom num-
ber, the condensate assumes a Gaussian shape with an rms
width =/, along the axial direction, but retains the para-
bolic shape radially. The radius of a trapped 2D condensate
decreases with N as R, = (128/7)/8(Nalt /1,)'/* [4].
Similarly, the half-length of trapped 1D condensates is
R, = (3Nal?/17)'/3 [5].

Our experiments in which 1D and 2D BECs were real-
ized were carried out in two different experimental set-
ups. For the study of condensates in a 2D geometry,
condensates of ~107 atoms were generated as described
in Refs. [15,16] and transferred into an optical trap [17].
The optical trapping potential was generated by focusing
a 1064 nm laser into a light sheet using cylindrical lenses,
with the tight focus in the vertical dimension to provide op-
timum support against gravity. This resulted in typical trap
frequencies of w,/27 = 790 Hz, /27 = 30 Hz, and
w y/27 = 10 Hz for a laser power of =500 mW. The
axial level spacing in this trap corresponds to a temperature
of T = hw,/kp = 40 nK, and the axial harmonic oscilla-
tor length was [, = 0.75 um. The transfer from the mag-
netic trap into the optical trap was accomplished by turning
on the trapping light field and turning down the magnetic
trapping potential resulting in a transfer efficiency of more
than 50%. The depth of the optical potential and the trap
frequencies could be easily varied by changing the power
of the trapping beam.

To observe the transition from the 3D Thomas-Fermi
regime into a 2D situation, we have adjusted the number
of condensate atoms between 2 X 10% and 2 X 10* by
exposing the optically trapped BEC to a thermal sodium
atomic beam. Condensates were detected by suddenly re-
leasing the atoms from the trap and taking absorption im-
ages after 15 ms free expansion. The condensates dropped
by 15 pum during the 100 ws imaging time, which is not
more than 10% of the measured length of our shortest
condensates. During expansion, the interaction energy is
converted almost exclusively into kinetic energy in the
tightly confining vertical dimension. Thus, the horizontal
radius of the condensate remains almost unchanged while
the vertical length expands quickly, and after 15 ms the
length is even larger than the radius. Length and radius
were determined by fitting the condensate with a parabolic
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Thomas-Fermi distribution which is exact in the large-
number limit. For small numbers, the vertical condensate
shape approaches a Gaussian, but we also used the para-
bolic fitting function to avoid any bias. A parabolic fitting
function may underestimate the rms width of a Gaussian
by at most 20%.

Figures 1a and 1b show how the expanded condensate
became more elongated for small atom numbers, clear evi-
dence for approaching 2D. In Fig. 1c the aspect ratio
of condensates in three different optical traps is shown.
In all three traps, the aspect ratio approaches a constant
value for large atom numbers, which can be calculated
using the results of [18] for the Thomas-Fermi limit. The
increase of the aspect ratio for small atom numbers is
due to clamping of the vertical length of the condensate
because of saturation of the release energy while the width
shrinks further. For the weakest trap, using Eq. (2), Nop =
2.9 X 107, while we could observe condensates with atom
numbers lower than N,p/10.

The saturation of the mean release energy per particle
at the kinetic part of the zero-point energy of the trap be-
comes obvious if the half-length of the expanded conden-
sates is plotted versus the radius (see Fig. 2). For a long
enough time of flight, the mean release energy is simply

Aspect Ratio
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FIG. 1. Crossover from 3D to 2D, observed in the change of

the aspect ratio after 15 ms time of flight. (a) A 2D condensate
with 8 X 10* atoms. (b) A 3D condensate with 7 X 10° atoms
in a trap with vertical trap frequency of w,/27 =~ 790 Hz. (c)
Aspect ratio as a function of atom number for optical traps with
w, /21 =~ 1620 Hz (filled circles), 790 Hz (open diamonds),
and 450 Hz (filled squares). The lines indicate the aspect ra-
tios as expected for 3D condensates. We attribute discrepancies
between expected and measured aspect ratios for large numbers
to the influence of anharmonicities on the measurement of the
trap frequencies. Where given, the error bars represent only the
error from fitting of the condensate shape.
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FIG. 2. Half-length and release energy versus radius for the
same optical traps as in Fig. 1. As the condensates cross over
from 3D to 2D the half length approaches a constant value. The
dashed line represents the expected behavior of a purely 3D
condensate and the solid line the expected 2D saturation level
of the release energy for the weakest trap (filled squares).

proportional to the square of the measured half-length and
is given by E. = mR.(t)>/14t>. 1In all our traps the
half-length appears to approach a constant value corre-
sponding to a release energy close to fiw, /4, the vertical
kinetic zero-point energy.

The 1D experiments were carried out in a Ioffe-
Pritchard—type magnetic trap with radial and axial
trapping frequencies of @ | /27 = 360 Hz and w, /27 =
3.5 Hz [19]. We obtained an extreme aspect ratio of
~100 by reducing the axial confinement during the final
evaporation stage. As in the 2D case, the number of atoms
in the condensate was lowered by exposing the gas to a
thermal sodium beam, followed by a reequilibration time
of 15s. A radiofrequency shield [16] limited the trap
depth to 10—-40 kHz (0.5-2 wK). This ensured conden-
sate fractions of at least 50%. We analyzed the cloud using
absorption imaging along one of the radial directions
after a ballistic expansion of + = 4 ms. In contrast to
the 2D experiments, the aspect ratio of the cloud was not
yet inverted after this short time of flight. The measured
condensate sizes were corrected for the finite imag-
ing resolution of 5 um, a correction of less than 10%.

Similar to the 2D experiment, the crossover to 1D was
observed by a change of the aspect ratio when the number
of atoms was reduced (Fig. 3). In the 3D limit, neglecting
the initial radial size and the axial expansion (both <1%
corrections) the aspect ratio equals w,¢ independent of N.
The deviation from this behavior below =5 X 10* atoms
demonstrates the crossover to 1D. At the same time,
the release energy approached fiw, /2, the zero-point ki-
netic energy of the trapping potential (Fig. 3b). For this
trap, Eq. (1) yields Nyjp = 1.5 X 10%, while we could ob-
serve condensates with N as low as Nip/2. Note that at
the crossover to 2D the interaction energy per particle is
roughly equal to the kinetic zero-point energy, while at the
crossover to 1D it is only approximately half the kinetic
zero-point energy. Thus, in the 1D geometry, the aspect
ratio deviates from the 3D limit for larger ratios of N/Nip
than in the 2D case.
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FIG. 3. Crossover from 3D to 1D. (a) Aspect ratio after 4 ms

time of flight versus atom number. (b) Radius versus half-length
for the same data. The release energy approaches the expected
constant value (solid line) for low atom number. The dashed line
represents the behavior of a 3D condensate. Note that the use
of a parabolic fitting function slightly underestimates the release
energy in the 1D regime.

So far, we have discussed only the condensate and its
crossover from the 3D to a (quasi)lower-dimensional situ-
ation. Here we will briefly address the thermal component
and finite temperature effects. The finite trap depth pro-
vides constant evaporative cooling which counteracts any
residual heating and stabilizes the temperature at a con-
stant fraction 1/7 of the trap depth Uy,p. For a quantum
saturated thermal cloud (T < T.), the number of ther-
mal atoms Ny, can be approximated by simply counting
the number of states with an energy below kgT, which
results in Ny, = (Utmp/nh)3/a)2lwz. This estimate as-
sumes that the thermal cloud is still three dimensional
(kT > hw, ;), in agreement with the situation in the
experiment. To be able to discern the condensate from
the thermal cloud, Ny, should not be much larger than
Nip (N2p). This simple argument implies that for our 1D
trap where Nip = 1.5 X 10%, the maximum allowed trap
depth would be 40 kHz assuming a typical » = 10 and
a minimum condensate fraction of 10%. This is in fair
agreement with our experimental observations.

In a magnetic trap, the trap depth can be adjusted inde-
pendently of the trap frequencies using an rf shield. In an
optical trap created using a single Gaussian focus, the trap
frequencies are proportional to the square root of the trap
depth. Thus, tighter optical traps can store more thermal
atoms, yet Eq. (2) implies that Npp is lower for tighter
traps. Therefore, tight single-focus optical traps are less
suitable for the observation of lower-dimensional conden-
sates. Experimentally, we have observed that for weaker
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traps we could penetrate further into the 2D regime (see
Fig. 1c) than for tighter ones, which is consistent with the
considerations above.

In our experiments, the thermal cloud is always three-
dimensional, implying that the critical temperature 7. for
Bose condensation is also larger than the energy-level spac-
ing of the trap, i.e., kgT. > kT > fhw,. A new physical
regime in which the condensation process could be studied
in lower dimensions would be reached if thermal excita-
tions freeze out before a BEC forms. This requires that
the total number of atoms N be smaller than the number
of states with an energy smaller than Zw,. Thus, in 1D,
the number of atoms may not exceed the aspect ratio of the
trap, i.e., N < A = w;/w,,, where w,, is the trapping fre-
quency in the weakly confining direction, while in 2D the
relevant criterion is N < A%. For the traps used in our ex-
periments, this implies N < 100 (1D) or N < 2500 (2D),
which, at least for 2D, seems to be within experimental
reach. It is not yet clear under what circumstances one will
observe quasicondensates [4,6] or the Kosterlitz-Thouless
transition [20]. A full understanding of the observation of
2D quantum degeneracy of spin-polarized hydrogen [21] is
still lacking, and controlled experiments with dilute gases
could give useful insights. In a 1D geometry, a related ef-
fect that could be observed is a two-step condensation as
discussed in [22].

Lower-dimensional condensates, as prepared in our ex-
periments, offer many opportunities for further scientific
studies. Topological excitations such as solitons (in 1D)
and vortices (in 2D) should be much more stable than in
3D, where solitons suffer from kink instabilities and vor-
tices can bend. The character and spectrum of the collec-
tive excitations is expected to exhibit a qualitative change
in lower dimensions [23].

Another area of significant interest is the study of quasi-
condensates [4—6], which locally behave like ordinary
condensates but do not have a globally uniform phase.
Such phase fluctuations have recently been observed in 3D
[24]. However, the importance of phase fluctuations is ex-
pected to be more pronounced in lower dimensions.

An even more ambitious goal is the observation of a
Tonks gas in a one-dimensional geometry [5,7,8]. At zero
temperature, such a gas of “impenetrable bosons” is real-
ized when the axial distance 1/7 between atoms exceeds
the 1D healing length, & = [, /(27ia)"/? [5], resulting in
fiTonks = 2a/ lzl as a condition for the linear density. Thus,
fTonks 18 8a®/ li times smaller than 7i1p. In 2D, the col-
lision physics is severely altered only for a/R, > 1 [4].
Such regimes require much tighter confinement than in
our experiment and may be realized using optical lattices
or magnetic microtraps, or alternatively a larger scattering
length, e.g., near a Feshbach resonance.

In conclusion, we have prepared (quasi-)low-
dimensional condensates in optical and magnetic traps.
Because of the extreme geometries of our traps, the
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number of atoms at the crossover is rather large (>10° in
the 2D case) which provides a good starting point for the
exploration of phenomena which occur only in one or two
dimensions.
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Note added.— Very recently, (quasi)lD condensates in
a magnetic trap were also realized with lithium [25].
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